Skip to content

Image Search Application with OpenAI CLIP Model and Faiss Library

License

Notifications You must be signed in to change notification settings

abinthomasonline/clip-faiss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Search Application with OpenAI CLIP Model and Faiss Library

This repository contains an Image Search Application that leverages OpenAI's CLIP (Contrastive Language-Image Pretraining) model and Meta's Faiss (Facebook AI Similarity Search) library to enable efficient and accurate similarity search capabilities. The application allows users to perform image searches by inputting natural language queries.

Demo

Demo Demo

Table of Contents

Introduction

CLIP Model

CLIP (Contrastive Language-Image Pretraining) is a state-of-the-art deep learning model developed by OpenAI, designed to bridge the gap between natural language processing and computer vision. It achieves this by jointly learning to understand images and text through contrastive learning. CLIP takes a pair of an image and a text prompt as inputs and processes them using a CNN and a transformer-based language model, respectively. The model outputs dense embeddings that encode the information of both inputs in a shared space. This enables CLIP to perform various tasks, such as image classification and image search based on natural language queries, without the need for task-specific training.

CLIP model usage:

import clip
import torch

model, preprocess = clip.load("ViT-B/32")

images = preprocess(images)
texts = clip.tokenize(texts)

with torch.no_grad():
    image_features = model.encode_image(images)
    text_features = model.encode_text(texts)

Faiss Library

Faiss is an efficient and powerful library developed by Facebook AI Research (FAIR) for similarity search and clustering of dense vectors. It is specifically designed to handle large-scale datasets and high-dimensional vector spaces, making it well-suited for applications in computer vision, natural language processing, and machine learning. Its optimized implementations enable users to perform nearest neighbor searches and clustering operations with outstanding speed and memory efficiency.

Faiss usage:

import faiss

index = faiss.IndexFlatIP(d)  # d is the dimension of the vectors
index.add(vectors)  # indexing

distances, indices = index.search(query_vectors, k)  # k is the number of nearest neighbors to search for

Design

The design of the Image Search Application revolves around the integration of the pretrained CLIP model and Faiss library to enable efficient image search capabilities. Initially, the application processes all images in the search space using the pretrained CLIP model, generating dense embeddings that represent the visual information contained in each image. These embeddings are then indexed and stored using Faiss, allowing for fast and accurate "nearest inner product neighbor" searches.

When a user submits a natural language query, the application takes the input and employs the same CLIP model to generate an embedding that represents the semantic information of the query. It then performs a nearest neighbor search within the Faiss index to find image embeddings that best match the query's embedding. The results are then presented to the user, displaying visually similar images based on their textual description.

Installation

  1. Clone the repository
git clone https://github.com/abinthomasonline/clip-faiss.git
  1. Install the required packages
pip install -r requirements.txt

Usage

Create index

python index.py --image_dir_path <path_to_images>
  • image_dir_path: Path to directory containing images to be indexed

An index file named index.faiss will be created in the static directory. A mapping file named image_paths.json will be created in the static directory.

Search app in CLI

python app.py

The application will prompt the user to enter a natural language query. The top result will be displayed in a new window. Enter exit to quit the application.

Search Web App

python serve.py

The application will be hosted at http://localhost:5000/. Enter a natural language query in the search bar and press Search to submit the query. The top 5 results will be displayed below the search bar.

Dataset

The demo uses a dataset of 5400 animal images in 90 different categories. The dataset can be downloaded from here. Index file and mapping file for this dataset is available in the static directory.

Files

clip-faiss/
├── static/                    # Web app static files                
│   ├── data/                      
│   │   └── images/            # Images
│   ├── app.js 
│   ├── image_paths.json       # mapping file (demo)
│   ├── index.faiss            # index file (demo)
│   └── styles.css       
├── templates/                 # HTML templates
│   └── index.html             
├── app.py                     # Run CLI App
├── index.py                   # Indexing
├── README.md                  # This file
├── requirements.txt           # Requirements file
└── serve.py                   # Run Web App

License

This project is licensed under the MIT License. Feel free to use, modify, and distribute the code as per the terms of the license.

About

Image Search Application with OpenAI CLIP Model and Faiss Library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published