-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import gym | ||
import torch | ||
import torch.nn.functional as F | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from tqdm import tqdm | ||
import rl_utils | ||
|
||
class PolicyNet(torch.nn.Module): | ||
def __init__(self, state_dim, hidden_dim, action_dim): | ||
super(PolicyNet, self).__init__() | ||
self.fc1 = torch.nn.Linear(state_dim, hidden_dim) | ||
self.fc2 = torch.nn.Linear(hidden_dim, action_dim) | ||
|
||
def forward(self, x): | ||
x = F.relu(self.fc1(x)) | ||
return F.softmax(self.fc2(x), dim=1) # 0是对列做归一化,1是对行做归一化 | ||
|
||
class REINFORCE: | ||
def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma, | ||
device): | ||
self.policy_net = PolicyNet(state_dim, hidden_dim, | ||
action_dim).to(device) | ||
self.optimizer = torch.optim.Adam(self.policy_net.parameters(), | ||
lr=learning_rate) # 使用Adam优化器 | ||
self.gamma = gamma # 折扣因子 | ||
self.device = device | ||
|
||
def take_action(self, state): # 根据动作概率分布随机采样 | ||
state = torch.tensor([state], dtype=torch.float).to(self.device) | ||
probs = self.policy_net(state) | ||
action_dist = torch.distributions.Categorical(probs) | ||
action = action_dist.sample() | ||
return action.item() | ||
|
||
def update(self, transition_dict): | ||
reward_list = transition_dict['rewards'] | ||
state_list = transition_dict['states'] | ||
action_list = transition_dict['actions'] | ||
|
||
G = 0 | ||
self.optimizer.zero_grad() | ||
for i in reversed(range(len(reward_list))): # 从最后一步算起 | ||
reward = reward_list[i] | ||
state = torch.tensor([state_list[i]], | ||
dtype=torch.float).to(self.device) | ||
action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device) | ||
log_prob = torch.log(self.policy_net(state).gather(1, action)) | ||
G = self.gamma * G + reward | ||
loss = -log_prob * G # 每一步的损失函数 | ||
loss.backward() # 反向传播计算梯度 | ||
self.optimizer.step() # 梯度下降 | ||
|
||
|
||
learning_rate = 1e-3 | ||
num_episodes = 1000 | ||
hidden_dim = 128 | ||
gamma = 0.98 | ||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device( | ||
"cpu") | ||
|
||
env_name = "CartPole-v0" | ||
env = gym.make(env_name) | ||
env.seed(0) | ||
torch.manual_seed(0) | ||
state_dim = env.observation_space.shape[0] | ||
action_dim = env.action_space.n | ||
agent = REINFORCE(state_dim, hidden_dim, action_dim, learning_rate, gamma, | ||
device) | ||
|
||
return_list = [] | ||
for i in range(10): | ||
with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: | ||
for i_episode in range(int(num_episodes / 10)): | ||
episode_return = 0 | ||
transition_dict = { | ||
'states': [], | ||
'actions': [], | ||
'next_states': [], | ||
'rewards': [], | ||
'dones': [] | ||
} | ||
state = env.reset() | ||
done = False | ||
while not done: | ||
action = agent.take_action(state) | ||
next_state, reward, done, _ = env.step(action) | ||
transition_dict['states'].append(state) | ||
transition_dict['actions'].append(action) | ||
transition_dict['next_states'].append(next_state) | ||
transition_dict['rewards'].append(reward) | ||
transition_dict['dones'].append(done) | ||
state = next_state | ||
episode_return += reward | ||
return_list.append(episode_return) | ||
agent.update(transition_dict) | ||
if (i_episode + 1) % 10 == 0: | ||
pbar.set_postfix({ | ||
'episode': | ||
'%d' % (num_episodes / 10 * i + i_episode + 1), | ||
'return': | ||
'%.3f' % np.mean(return_list[-10:]) | ||
}) | ||
pbar.update(1) | ||
|
||
episodes_list = list(range(len(return_list))) | ||
plt.plot(episodes_list, return_list) | ||
plt.xlabel('Episodes') | ||
plt.ylabel('Returns') | ||
plt.title('REINFORCE on {}'.format(env_name)) | ||
plt.show() | ||
|
||
mv_return = rl_utils.moving_average(return_list, 9) | ||
plt.plot(episodes_list, mv_return) | ||
plt.xlabel('Episodes') | ||
plt.ylabel('Returns') | ||
plt.title('REINFORCE on {}'.format(env_name)) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters