This is the official code of "Self-supervised Character-to-Character Distillation for Text Recognition". For more details, please refer to our paper or 中文解读 or poster. If you have any questions please contact me by email ([email protected]).
We also released CVPR23 work on scene text recognition:
# 3090 Ubuntu 16.04 Cuda 11
conda create -n CCD python==3.7
source activate CCD
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install tensorboard==1.15.0
pip install tensorboardX==2.2
# The following optional dependencies are necessary
please refer to requirement.txt
# We recommend using multiple 3090s for training.
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 train.py --config ./Dino/configs/CCD_pretrain_ViT_xxx.yaml
#update model.pretrain_checkpoint in CCD_vision_model_xxx.yaml
CUDA_VISIBLE_DEVICES=0,1 python train_finetune.py --config ./Dino/configs/CCD_vision_model_xxx.yaml
#update model.checkpoint in CCD_vision_model_xxx.yaml
CUDA_VISIBLE_DEVICES=0 python test.py --config ./Dino/configs/CCD_vision_model_xxx.yaml
- Pretrain: CCD-ViT-Small,3090 Finetune: ARD,3090 and STD,3090
- pretrain: CCD-ViT-Base,3090 Finetune:ARD,v100 and STD,3090
Data (please refer to DiG)
data_lmdb
├── charset_36.txt
├── Mask
├── TextSeg
├── Super_Resolution
├── training
│ ├── label
│ │ └── synth
│ │ ├── MJ
│ │ │ ├── MJ_train
│ │ │ ├── MJ_valid
│ │ │ └── MJ_test
│ │ └── ST
│ │── URD
│ │ └── OCR-CC
│ ├── ARD
│ │ ├── Openimages
│ │ │ ├── train_1
│ │ │ ├── train_2
│ │ │ ├── train_5
│ │ │ ├── train_f
│ │ │ └── validation
│ │ └── TextOCR
├── validation
│ ├── 1.SVT
│ ├── 2.IIIT
│ ├── 3.IC13
│ ├── 4.IC15
│ ├── 5.COCO
│ ├── 6.RCTW17
│ ├── 7.Uber
│ ├── 8.ArT
│ ├── 9.LSVT
│ ├── 10.MLT19
│ └── 11.ReCTS
└── evaluation
└── benchmark
├── SVT
├── IIIT5k_3000
├── IC13_1015
├── IC15_2077
├── SVTP
├── CUTE80
├── COCOText
├── CTW
├── TotalText
├── HOST
├── WOST
├── MPSC
└── WordArt
- optional, kmeans results of Synth and URD
- if you don't want to generate mask, you can generate mask results online. please rewrite code1 and code2
cd ./mask_create
run generate_mask.py #parallelly process mask --> lmdb file
run merge.py #merge multiple lmdb files into single file
If you find our method useful for your reserach, please cite
@InProceedings{Guan_2023_ICCV,
author = {Guan, Tongkun and Shen, Wei and Yang, Xue and Feng, Qi and Jiang, Zekun and Yang, Xiaokang},
title = {Self-Supervised Character-to-Character Distillation for Text Recognition},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {19473-19484}
}
- This code are only free for academic research purposes and licensed under the 2-clause BSD License - see the LICENSE file for details.