This repository holds the code for FraudGT framework.
You can create a conda environment to easily run the code. For example, we can create a virtual environment named fraudGT
:
conda create -n fraudGT python=3.9 -y
conda activate fraudGT
Install the required packages using the following commands:
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
conda install pyg -c pyg
pip install -r requirements.txt
You will need to firstly specify the dataset path (./data
in this example) and log location (./results
in this example) by editing the config file provided under ./configs/{dataset_name}/
. An example configuration is
......
out_dir: ./results
dataset:
dir: ./data
......
Download and unzip the Anti-Money Laundering dataset into your specified dataset path (for example, put the unzipped HI-small.csv
into ./data
).
Dataset will be automatically processed at the first run.
For convenience, a script file is created to run the experiment with specified configuration. For instance, you can edit and run the interactive_run.sh
to start the experiment.
cd FraudGT
chmox +x ./run/interactive_run.sh
./run/interactive_run.sh