Package containing some integral constants and elementary functions for integral arguments.
Go standard math
package lacks some frequently used integral functions. This package tries to fill the gap, providing their effective and convenient implementations.
Functions have the same or similar names as their float64
equivalents from math
package (if there are any). Since Go does not allow overloading, constants and functions related to each of builtin integral types (except uintptr
and type aliases like byte
or rune
, which are not covered by this package) are grouped within subpackage with a corresponding name (ix
for int
, i8
for int8
, ...; ux
for uint
, u8
for uint8
, ...). Functions defined only for few of the types (like Power
functions) are kept in the root imath
package.
import (
"github.com/adam-lavrik/go-imath/ix" // int-related functions
"github.com/adam-lavrik/go-imath/u32" // uint32-related function
...
)
T
- integer type, package is centered on (uint8
foru8
,int
forix
, ...)UT
- unsigned type, complementary to signedT
(uint8
forint8
,uint
forint
, ...)ST
- signed type, complementary to unsignedT
(int8
foruint8
,int
foruint
, ...)
Size
- size of type value in bytesBitSize
- same in bitsMinimal
- minimal possible value of typeMaximal
- maximal possible value of type
Name | Type | Value (32-bit) | Value (64-bit) |
---|---|---|---|
ix.Size |
uintptr |
4 | 8 |
ix.BitSize |
uintptr |
32 | 64 |
ix.Minimal |
int |
-2147483648 | -9223372036854775808 |
ix.Maximal |
int |
2147483647 | 9223372036854775807 |
ux.Size |
uintptr |
4 | 8 |
ux.BitSize |
uintptr |
32 | 64 |
ux.Minimal |
uint |
0 | 0 |
ux.Maximal |
uint |
4294967295 | 18446744073709551615 |
Name | Type | Value |
---|---|---|
i8.Size |
uintptr |
1 |
i8.BitSize |
uintptr |
8 |
i8.Minimal |
int8 |
-128 |
i8.Maximal |
int8 |
127 |
u8.Size |
uintptr |
1 |
u8.BitSize |
uintptr |
8 |
u8.Minimal |
uint8 |
0 |
u8.Maxnimal |
uint8 |
255 |
i16.Size |
uintptr |
2 |
i16.BitSize |
uintptr |
16 |
i16.Minimal |
int16 |
-32768 |
i16.Maximal |
int16 |
32767 |
u16.Size |
uintptr |
2 |
u16.BitSize |
uintptr |
16 |
u16.Minimal |
uint16 |
0 |
u16.Maximal |
uint16 |
65535 |
i32.Size |
uintptr |
4 |
i32.BitSize |
uintptr |
32 |
i32.Minimal |
int32 |
-2147483648 |
i32.Maximal |
int32 |
2147483647 |
u32.Size |
uintptr |
4 |
u32.BitSize |
uintptr |
32 |
u32.Minimal |
uint32 |
0 |
u32.Maximal |
uint32 |
4294967295 |
i64.Size |
uintptr |
8 |
i64.BitSize |
uintptr |
64 |
i64.Minimal |
int64 |
-9223372036854775808 |
i64.Maximal |
int64 |
9223372036854775807 |
u64.Size |
uintptr |
8 |
u64.BitSize |
uintptr |
64 |
u64.Minimal |
uint64 |
0 |
u64.Maximal |
uint64 |
18446744073709551615 |
Absolute value of signed integer. Argument and result have the same type.
Examples:
a0 := ix.Abs(-16) // a0 == int(16)
a1 := i8.Abs(42) // a1 == int8(42)
Important: since the lowest negative values of integral signed types have no corresponding positive values, result of Abs(i#.Minimal)
is falsely equal to the argument:
a2 := i16.Abs(-32768) // a2 == int16(-32768)
Absolute value of signed integer. Argument is of signed integer type, and result is of the complementary unsigned integer type thus can hold all positive values corresponding to all possible negative values of argument type.
Examples:
a0 := ix.Absu(-16) // a0 == uint(16)
a1 := i8.Absu(42) // a1 == uint8(42)
a2 := i16.Absu(-32768) // a2 == uint16(32768)
Value with magnitude of target
and sign of source
. Zero target
always produces zero result. Non-zero target
and zero source
produce positive result.
For an obvious reason these functions take only signed arguments.
Examples:
c0 := ix.Copysign(16, 0) // c0 == int(16)
c1 := i8.Copysign(-38, 1) // c1 == int8(38)
c2 := i64.Copysing(42, -1) // c2 == int64(-42)
Important: since the lowest negative values of integral signed types have no corresponding positive values, their sign cannot be set to positive. This limitation cannot be avoided.
Quotient and remainder of dividend
and divisor
. Zero divisor
causes division by zero error.
Examples:
q0, d0 := ux.DivMod(15, 8) // q0 == uint(1), d0 == uint(7)
q1, d1 := i16.DivMod(320, 64) // q1 == int16(5), d1 == int16(0)
q2, d2 := i64.DivMod(79, 0) // Error
Greatest common divisor of two integers. Arguments can be of signed or unsigned integer type, while result is always unsigned (same type for unsigned arguments or complementary unsigned for signed ones).
Examples:
g0 = ix.GCD(48, 32) // g0 == uint(16)
g1 = u16.GCD(45, 0) // g1 == uint16(45)
g2 = i8.GCD(-42, -8) // g2 == uint8(2)
g3 = i32.GCD(-28, 21) // g3 == uint32(7)
Check whether the value is an integer power of 2 (true
) or not (false
). Zero and negative values always produce false
.
Examples:
i2p0 := ix.Is2Power(14) // i2p0 == false
i2p1 := u8.Is2Power(128) // i2p1 == true
i2p2 := i16.Is2Power(-7) // i2p2 == false
Check whether the value is odd (true
) or not (false
).
io0 := ux.IsOdd(742) // io0 == false
io1 := u8.IsOdd(0) // io1 == true
io2 := i32.IsOdd(-11345) // io2 == true
Least common multiply of two integers. Arguments can be of signed or unsigned integer type, while result is always unsigned (same type for unsigned arguments or complementary unsigned for signed ones).
Examples:
l0 = ix.LCM(48, 32) // l0 == uint(96)
l1 = u16.LCM(45, 0) // l1 == uint16(0)
l2 = i8.LCM(-42, -8) // l2 == uint8(168)
l3 = i32.LCM(-28, 21) // l3 == uint32(84)
Minimal of two integers.
Examples:
mi0 := ix.Min(13, -42) // mi0 == int(-42)
mi1 := u8.Min(255, 255) // mi1 == uint8(255)
Minimal of one or more integers.
Examples:
mis0 := ix.Mins(-42) // mis0 == int(-42)
mis1 := u8.Mins(255, 255, 14) // mis1 == uint8(14)
Minimal of slice items. Empty slice causes error.
Examples:
mis := ix.MinSlice([]int{1, - 3, -42}) // mis == int(-42)
Minimal of slice items. For an empty slice second result is true
. Otherwise it is false
, and first result is meaningful.
Examples:
misc, empty := ix.MinSliceChecked([]int{1, - 3, -42}) // misc == int(-42), empty == false
Maximal of two integers.
Examples:
ma0 := ix.Max(13, -42) // ma0 == int(13)
ma1 := u8.Max(255, 255) // ma1 == uint8(255)
Maximal of one or more integers.
Examples:
mas0 := ix.Maxs(-42) // mas0 == int(-42)
mas1 := u8.Maxs(255, 255, 14) // mas1 == uint8(255)
Maximal of slice items. Empty slice causes error.
Examples:
mas := ix.MaxSlice([]int{1, - 3, -42}) // mas == int(1)
Maximal of slice items. For an empty slice second result is true
. Otherwise it is false
, and first result is meaningful.
Examples:
masc, empty := ix.MaxSliceChecked([]int{1, - 3, -42}) // masc == int(1), empty == false
Minimal (first) and maximal (second) of two integers.
Examples:
min0, max0 := ix.MinMax(13, -42) // min0 == int(-42), max0 == int(13)
min1, max1 := u8.MinMax(255, 255) // min1 == uint8(255), max1 == uint8(255)
Minimal (first) and maximal (second) of one or more integers.
Examples:
mins1, maxs1 := u8.MinMaxs(255, 255, 14) // mins1 == uint8(14), maxs1 == uint8(255)
Minimal (first) and maximal (second) of slice items. Empty slice causes error.
Examples:
mins, maxs := ix.MinMaxSlice([]int{1, - 3, -42}) // mins == int(-42), maxs == int(1)
Minimal (first) and maximal (second) of slice items. For an empty slice third result is true
. Otherwise it is false
, and first and second results are meaningful.
Examples:
minsc, maxsc, empty := ix.MaxSliceChecked([]int{1, - 3, -42}) // minsc == int(-42), maxsc == int(1), empty == false
Signum of signed integer:
- -1 if value < 0
- 0 if value = 0
- 1 if value > 0
Examples:
s0 := ix.Sign(99) // s0 == int(1)
s1 := i16.Sign(0) // s1 == int16(0)
s2 := i64.Sign(-1234) // s2 == int64(-1)
Signum of unsigned integer:
- 0 if value = 0
- 1 if value > 0
Examples:
s0 := ux.Sign(99) // s0 == uint(1)
s1 := u16.Sign(0) // s1 == uint16(0)
Result of the same signed type as value
with all bits equal to value
's highest bit:
- -1 if value < 0
- 0 if value >= 0
Examples:
s0 := ix.SignBit(99) // s0 == int(0)
s1 := i16.SignBit(0) // s1 == int16(0)
s2 := i64.SignBit(-1234) // s2 == int64(-1)
Fibonacci sequence member with corresponding index
. index
can be zero or negative.
Examples:
fi0 := ix.Fibonacci(0) // fi0 == int(0)
fi1 := i64.Fibonacci(5) // fi1 == int64(5)
fi2 := ix.Fibonacci(-4) // fi2 == int(-3)
fi3 := i64.Fibonacci(-5) // fi3 == int64(5)
Fibonacci sequence member with corresponding index
. index
can be zero.
Examples:
fu0 := ix.Fibonacci(0) // fu0 == int(0)
fu1 := i64.Fibonacci(6) // fu == int64(8)
Exponentiation of integral base
and non-negative exponent
.
Important:
- if
exponent
is 0, result is always 1, even ifbase
is 0 too; - since result values grow rapidly, this function is implemented only for
int
,uint
,int64
anduint64
types.
Examples:
p0 := ux.Pow(17, 2) // p0 == uint(289)
p1 := i64.Pow(-41, 7) // p1 == int64(-194754273881)
p2 := u64.Pow(0, 5) // p2 == uint64(0)
p3 := ix.Pow(-122, 0) // p3 == int(1)
(c) Adam Lavrik [email protected], 2020