forked from trainindata/deploying-machine-learning-models
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
75b48f5
commit 53bc67c
Showing
9 changed files
with
348 additions
and
68 deletions.
There are no files selected for viewing
Empty file.
92 changes: 92 additions & 0 deletions
92
packages/regression_model/regression_model/config/config.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import pathlib | ||
|
||
import regression_model | ||
|
||
|
||
PACKAGE_ROOT = pathlib.Path(regression_model.__file__).resolve().parent | ||
TRAINED_MODEL_DIR = PACKAGE_ROOT / "trained_models" | ||
DATASET_DIR = PACKAGE_ROOT / "datasets" | ||
|
||
# data | ||
TESTING_DATA_FILE = "test.csv" | ||
TRAINING_DATA_FILE = "train.csv" | ||
TARGET = "SalePrice" | ||
|
||
|
||
# variables | ||
FEATURES = [ | ||
"MSSubClass", | ||
"MSZoning", | ||
"Neighborhood", | ||
"OverallQual", | ||
"OverallCond", | ||
"YearRemodAdd", | ||
"RoofStyle", | ||
"MasVnrType", | ||
"BsmtQual", | ||
"BsmtExposure", | ||
"HeatingQC", | ||
"CentralAir", | ||
"1stFlrSF", | ||
"GrLivArea", | ||
"BsmtFullBath", | ||
"KitchenQual", | ||
"Fireplaces", | ||
"FireplaceQu", | ||
"GarageType", | ||
"GarageFinish", | ||
"GarageCars", | ||
"PavedDrive", | ||
"LotFrontage", | ||
# this one is only to calculate temporal variable: | ||
"YrSold", | ||
] | ||
|
||
# this variable is to calculate the temporal variable, | ||
# can be dropped afterwards | ||
DROP_FEATURES = "YrSold" | ||
|
||
# numerical variables with NA in train set | ||
NUMERICAL_VARS_WITH_NA = ["LotFrontage"] | ||
|
||
# categorical variables with NA in train set | ||
CATEGORICAL_VARS_WITH_NA = [ | ||
"MasVnrType", | ||
"BsmtQual", | ||
"BsmtExposure", | ||
"FireplaceQu", | ||
"GarageType", | ||
"GarageFinish", | ||
] | ||
|
||
TEMPORAL_VARS = "YearRemodAdd" | ||
|
||
# variables to log transform | ||
NUMERICALS_LOG_VARS = ["LotFrontage", "1stFlrSF", "GrLivArea"] | ||
|
||
# categorical variables to encode | ||
CATEGORICAL_VARS = [ | ||
"MSZoning", | ||
"Neighborhood", | ||
"RoofStyle", | ||
"MasVnrType", | ||
"BsmtQual", | ||
"BsmtExposure", | ||
"HeatingQC", | ||
"CentralAir", | ||
"KitchenQual", | ||
"FireplaceQu", | ||
"GarageType", | ||
"GarageFinish", | ||
"PavedDrive", | ||
] | ||
|
||
NUMERICAL_NA_NOT_ALLOWED = [ | ||
feature | ||
for feature in FEATURES | ||
if feature not in CATEGORICAL_VARS + NUMERICAL_VARS_WITH_NA | ||
] | ||
|
||
CATEGORICAL_NA_NOT_ALLOWED = [ | ||
feature for feature in CATEGORICAL_VARS if feature not in CATEGORICAL_VARS_WITH_NA | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,26 +1,41 @@ | ||
from sklearn.linear_model import Lasso | ||
from sklearn.pipeline import Pipeline | ||
from sklearn.preprocessing import MinMaxScaler | ||
|
||
import preprocessors as pp | ||
from regression_model.processing import preprocessors as pp | ||
from regression_model.config import config | ||
|
||
|
||
CATEGORICAL_VARS = ['MSZoning', | ||
'Neighborhood', | ||
'RoofStyle', | ||
'MasVnrType', | ||
'BsmtQual', | ||
'BsmtExposure', | ||
'HeatingQC', | ||
'CentralAir', | ||
'KitchenQual', | ||
'FireplaceQu', | ||
'GarageType', | ||
'GarageFinish', | ||
'PavedDrive'] | ||
|
||
PIPELINE_NAME = 'lasso_regression' | ||
|
||
price_pipe = Pipeline( | ||
[ | ||
('categorical_imputer', | ||
pp.CategoricalImputer(variables=CATEGORICAL_VARS)), | ||
]) | ||
( | ||
"categorical_imputer", | ||
pp.CategoricalImputer(variables=config.CATEGORICAL_VARS_WITH_NA), | ||
), | ||
( | ||
"numerical_inputer", | ||
pp.NumericalImputer(variables=config.NUMERICAL_VARS_WITH_NA), | ||
), | ||
( | ||
"temporal_variable", | ||
pp.TemporalVariableEstimator( | ||
variables=config.TEMPORAL_VARS, reference_variable=config.DROP_FEATURES | ||
), | ||
), | ||
( | ||
"rare_label_encoder", | ||
pp.RareLabelCategoricalEncoder(tol=0.01, variables=config.CATEGORICAL_VARS), | ||
), | ||
( | ||
"categorical_encoder", | ||
pp.CategoricalEncoder(variables=config.CATEGORICAL_VARS), | ||
), | ||
("log_transformer", pp.LogTransformer(variables=config.NUMERICALS_LOG_VARS)), | ||
( | ||
"drop_features", | ||
pp.DropUnecessaryFeatures(variables_to_drop=config.DROP_FEATURES), | ||
), | ||
("scaler", MinMaxScaler()), | ||
("Linear_model", Lasso(alpha=0.005, random_state=0)), | ||
] | ||
) |
26 changes: 0 additions & 26 deletions
26
packages/regression_model/regression_model/preprocessors.py
This file was deleted.
Oops, something went wrong.
Empty file.
192 changes: 192 additions & 0 deletions
192
packages/regression_model/regression_model/processing/preprocessors.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.base import BaseEstimator, TransformerMixin | ||
|
||
|
||
class CategoricalImputer(BaseEstimator, TransformerMixin): | ||
"""Categorical data missing value imputer.""" | ||
|
||
def __init__(self, variables=None) -> None: | ||
if not isinstance(variables, list): | ||
self.variables = [variables] | ||
else: | ||
self.variables = variables | ||
|
||
def fit(self, X: pd.DataFrame, y: pd.Series = None) -> "CategoricalImputer": | ||
"""Fit statement to accomodate the sklearn pipeline.""" | ||
|
||
return self | ||
|
||
def transform(self, X: pd.DataFrame) -> pd.DataFrame: | ||
"""Apply the transforms to the dataframe.""" | ||
|
||
X = X.copy() | ||
for feature in self.variables: | ||
X[feature] = X[feature].fillna("Missing") | ||
|
||
return X | ||
|
||
|
||
class NumericalImputer(BaseEstimator, TransformerMixin): | ||
"""Numerical missing value imputer.""" | ||
|
||
def __init__(self, variables=None): | ||
if not isinstance(variables, list): | ||
self.variables = [variables] | ||
else: | ||
self.variables = variables | ||
|
||
def fit(self, X, y=None): | ||
# persist mode in a dictionary | ||
self.imputer_dict_ = {} | ||
for feature in self.variables: | ||
self.imputer_dict_[feature] = X[feature].mode()[0] | ||
return self | ||
|
||
def transform(self, X): | ||
X = X.copy() | ||
for feature in self.variables: | ||
X[feature].fillna(self.imputer_dict_[feature], inplace=True) | ||
return X | ||
|
||
|
||
class TemporalVariableEstimator(BaseEstimator, TransformerMixin): | ||
"""Temporal variable calculator.""" | ||
|
||
def __init__(self, variables=None, reference_variable=None): | ||
if not isinstance(variables, list): | ||
self.variables = [variables] | ||
else: | ||
self.variables = variables | ||
|
||
self.reference_variables = reference_variable | ||
|
||
def fit(self, X, y=None): | ||
# we need this step to fit the sklearn pipeline | ||
return self | ||
|
||
def transform(self, X): | ||
X = X.copy() | ||
for feature in self.variables: | ||
X[feature] = X[self.reference_variables] - X[feature] | ||
|
||
return X | ||
|
||
|
||
class RareLabelCategoricalEncoder(BaseEstimator, TransformerMixin): | ||
"""Rare label categorical encoder""" | ||
|
||
def __init__(self, tol=0.05, variables=None): | ||
self.tol = tol | ||
if not isinstance(variables, list): | ||
self.variables = [variables] | ||
else: | ||
self.variables = variables | ||
|
||
def fit(self, X, y=None): | ||
# persist frequent labels in dictionary | ||
self.encoder_dict_ = {} | ||
|
||
for var in self.variables: | ||
# the encoder will learn the most frequent categories | ||
t = pd.Series(X[var].value_counts() / np.float(len(X))) | ||
# frequent labels: | ||
self.encoder_dict_[var] = list(t[t >= self.tol].index) | ||
|
||
return self | ||
|
||
def transform(self, X): | ||
X = X.copy() | ||
for feature in self.variables: | ||
X[feature] = np.where( | ||
X[feature].isin(self.encoder_dict_[feature]), X[feature], "Rare" | ||
) | ||
|
||
return X | ||
|
||
|
||
class CategoricalEncoder(BaseEstimator, TransformerMixin): | ||
"""String to numbers categorical encoder.""" | ||
|
||
def __init__(self, variables=None): | ||
if not isinstance(variables, list): | ||
self.variables = [variables] | ||
else: | ||
self.variables = variables | ||
|
||
def fit(self, X, y): | ||
temp = pd.concat([X, y], axis=1) | ||
temp.columns = list(X.columns) + ["target"] | ||
|
||
# persist transforming dictionary | ||
self.encoder_dict_ = {} | ||
|
||
for var in self.variables: | ||
t = temp.groupby([var])["target"].mean().sort_values(ascending=True).index | ||
self.encoder_dict_[var] = {k: i for i, k in enumerate(t, 0)} | ||
|
||
return self | ||
|
||
def transform(self, X): | ||
# encode labels | ||
X = X.copy() | ||
for feature in self.variables: | ||
X[feature] = X[feature].map(self.encoder_dict_[feature]) | ||
|
||
# check if transformer introduces NaN | ||
if X[self.variables].isnull().any().any(): | ||
null_counts = X[self.variables].isnull().any() | ||
vars_ = { | ||
key: value for (key, value) in null_counts.items() if value is True | ||
} | ||
raise ValueError( | ||
f"Categorical encoder has introduced NaN when " | ||
f"transforming categorical variables: {vars_.keys()}" | ||
) | ||
|
||
return X | ||
|
||
|
||
class LogTransformer(BaseEstimator, TransformerMixin): | ||
"""Logarithm transformer.""" | ||
|
||
def __init__(self, variables=None): | ||
if not isinstance(variables, list): | ||
self.variables = [variables] | ||
else: | ||
self.variables = variables | ||
|
||
def fit(self, X, y=None): | ||
# to accomodate the pipeline | ||
return self | ||
|
||
def transform(self, X): | ||
X = X.copy() | ||
|
||
# check that the values are non-negative for log transform | ||
if not (X[self.variables] > 0).all().all(): | ||
vars_ = self.variables[(X[self.variables] <= 0).any()] | ||
raise ValueError( | ||
f"Variables contain zero or negative values, " | ||
f"can't apply log for vars: {vars_}" | ||
) | ||
|
||
for feature in self.variables: | ||
X[feature] = np.log(X[feature]) | ||
|
||
return X | ||
|
||
|
||
class DropUnecessaryFeatures(BaseEstimator, TransformerMixin): | ||
def __init__(self, variables_to_drop=None): | ||
self.variables = variables_to_drop | ||
|
||
def fit(self, X, y=None): | ||
return self | ||
|
||
def transform(self, X): | ||
# encode labels | ||
X = X.copy() | ||
X = X.drop(self.variables, axis=1) | ||
|
||
return X |
Oops, something went wrong.