Skip to content

adri-romsor/FitNets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FitNets

FitNets: Hints for Thin Deep Nets

http://arxiv.org/abs/1412.6550

  • To run FitNets stage-wise training: THEANO_FLAGS="device=gpu,floatX=float32,optimizer_including=cudnn" python fitnets_training.py fitnet_yaml regressor -he hints_epochs -lrs lr_scale

    • fitnet_yaml: path to the FitNet yaml file,
    • regressor: regressor type, either convolutional (conv) or fully-connected (fc),
    • Optional argument -he hints_epochs: int - number of epochs to train the 1st stage. It is set to None by default. Leave as None when using the validation set to determine the number of epochs. Set to X when using the whole training set.
    • Optional argument -lrs lr_scale: float - learning rate scaler to be applied to the pre-trained layers at the 2nd stage.

About

FitNets: Hints for Thin Deep Nets

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages