forked from Visual-Attention-Network/VAN-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
van.py
236 lines (198 loc) · 8.12 KB
/
van.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
from timm.models.layers import DropPath
from mmcv.cnn.utils.weight_init import (constant_init, normal_init,
trunc_normal_init)
from torch.nn.modules.utils import _pair as to_2tuple
from mmseg.models.builder import BACKBONES
from mmcv.cnn import build_norm_layer
from mmcv.runner import BaseModule
import math
import warnings
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
self.linear = linear
if self.linear:
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.fc1(x)
if self.linear:
x = self.relu(x)
x = self.dwconv(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class AttentionModule(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
self.conv_spatial = nn.Conv2d(
dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
self.conv1 = nn.Conv2d(dim, dim, 1)
def forward(self, x):
u = x.clone()
attn = self.conv0(x)
attn = self.conv_spatial(attn)
attn = self.conv1(attn)
return u * attn
class SpatialAttention(nn.Module):
def __init__(self, d_model):
super().__init__()
self.d_model = d_model
self.proj_1 = nn.Conv2d(d_model, d_model, 1)
self.activation = nn.GELU()
self.spatial_gating_unit = AttentionModule(d_model)
self.proj_2 = nn.Conv2d(d_model, d_model, 1)
def forward(self, x):
shorcut = x.clone()
x = self.proj_1(x)
x = self.activation(x)
x = self.spatial_gating_unit(x)
x = self.proj_2(x)
x = x + shorcut
return x
class Block(nn.Module):
def __init__(self,
dim,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer=nn.GELU,
linear=False,
norm_cfg=dict(type='SyncBN', requires_grad=True)):
super().__init__()
self.norm1 = build_norm_layer(norm_cfg, dim)[1]
self.attn = SpatialAttention(dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = build_norm_layer(norm_cfg, dim)[1]
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop, linear=linear)
layer_scale_init_value = 1e-2
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.permute(0, 2, 1).view(B, C, H, W)
x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.attn(self.norm1(x)))
x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x)))
x = x.view(B, C, N).permute(0, 2, 1)
return x
class OverlapPatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self,
patch_size=7,
stride=4,
in_chans=3,
embed_dim=768,
norm_cfg=dict(type='SyncBN', requires_grad=True)):
super().__init__()
patch_size = to_2tuple(patch_size)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2))
self.norm = build_norm_layer(norm_cfg, embed_dim)[1]
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = self.norm(x)
x = x.flatten(2).transpose(1, 2)
return x, H, W
@BACKBONES.register_module()
class VAN(BaseModule):
def __init__(self,
in_chans=3,
embed_dims=[64, 128, 256, 512],
mlp_ratios=[8, 8, 4, 4],
drop_rate=0.,
drop_path_rate=0.,
depths=[3, 4, 6, 3],
num_stages=4,
linear=False,
pretrained=None,
init_cfg=None,
norm_cfg=dict(type='SyncBN', requires_grad=True)):
super(VAN, self).__init__(init_cfg=init_cfg)
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be set at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is not None:
raise TypeError('pretrained must be a str or None')
self.depths = depths
self.num_stages = num_stages
self.linear = linear
dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
sum(depths))] # stochastic depth decay rule
cur = 0
for i in range(num_stages):
patch_embed = OverlapPatchEmbed(patch_size=7 if i == 0 else 3,
stride=4 if i == 0 else 2,
in_chans=in_chans if i == 0 else embed_dims[i - 1],
embed_dim=embed_dims[i])
block = nn.ModuleList([Block(dim=embed_dims[i],
mlp_ratio=mlp_ratios[i],
drop=drop_rate,
drop_path=dpr[cur + j],
linear=linear,
norm_cfg=norm_cfg)
for j in range(depths[i])])
norm = nn.LayerNorm(embed_dims[i])
cur += depths[i]
setattr(self, f"patch_embed{i + 1}", patch_embed)
setattr(self, f"block{i + 1}", block)
setattr(self, f"norm{i + 1}", norm)
def init_weights(self):
print('init cfg', self.init_cfg)
if self.init_cfg is None:
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_init(m, std=.02, bias=0.)
elif isinstance(m, nn.LayerNorm):
constant_init(m, val=1.0, bias=0.)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[
1] * m.out_channels
fan_out //= m.groups
normal_init(
m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0)
else:
super(VAN, self).init_weights()
def forward(self, x):
B = x.shape[0]
outs = []
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
norm = getattr(self, f"norm{i + 1}")
x, H, W = patch_embed(x)
for blk in block:
x = blk(x, H, W)
x = norm(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
return outs
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x):
x = self.dwconv(x)
return x