Skip to content

ahwhbc/VAN-Segmentation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual Attention Network (VAN) for Segmentaion

This repo is a PyTorch implementation of applying VAN (Visual Attention Network) to semantic segmentation. The code is based on mmsegmentaion.

More details can be found in Visual Attention Network.

Citation

@article{guo2022visual,
  title={Visual Attention Network},
  author={Guo, Meng-Hao and Lu, Cheng-Ze and Liu, Zheng-Ning and Cheng, Ming-Ming and Hu, Shi-Min},
  journal={arXiv preprint arXiv:2202.09741},
  year={2022}
}

Results

Notes: Pre-trained models can be found in TsingHua Cloud.

VAN + UperNet

Method Backbone Pretrained Iters mIoU(ms) Params FLOPs Config Download
UperNet VAN-B0 IN-1K 160K 41.1 32M - config -
UperNet VAN-B1 IN-1K 160K 44.9 44M - config -
UperNet VAN-B2 IN-1K 160K 50.1 57M 948G config TsingHua Cloud
UperNet VAN-B3 IN-1K 160K 50.6 75M 1030G config TsingHua Cloud
UperNet VAN-B4 IN-1K 160K 52.2 90M 1098G config TsingHua Cloud
UperNet VAN-B4 IN-22K 160K 53.5 90M 1098G config TsingHua Cloud
UperNet VAN-B5 IN-22K 160K 53.9 117M 1208G config TsingHua Cloud
UperNet VAN-B6 IN-22K 160K 54.7 231M 1658G config TsingHua Cloud

Notes: In this scheme, we use multi-scale validation following Swin-Transformer. FLOPs are tested under the input size of 2048 $\times$ 512 using torchprofile (recommended, highly accurate and automatic MACs/FLOPs statistics).

VAN + Semantic FPN

Backbone Iters mIoU Config Download
VAN-Tiny 40K 38.5 config Google Drive
VAN-Small 40K 42.9 config Google Drive
VAN-Base 40K 46.7 config Google Drive
VAN-Large 40K 48.1 config Google Drive

Preparation

Install MMSegmentation and download ADE20K according to the guidelines in MMSegmentation.

Requirement

pip install mmsegmentation==0.26.0 (https://github.com/open-mmlab/mmsegmentation/tree/v0.26.0)

Training

We use 8 GPUs for training by default. Run:

./dist_train.sh /path/to/config 8

Evaluation

To evaluate the model, run:

./dist_test.sh /path/to/config /path/to/checkpoint_file 8 --eval mIoU

FLOPs

Install torchprofile using

pip install torchprofile

To calculate FLOPs for a model, run:

bash tools/flops.sh /path/to/checkpoint_file --shape 512 512

Acknowledgment

Our implementation is mainly based on mmsegmentaion, Swin-Transformer, PoolFormer, and Enjoy-Hamburger. Thanks for their authors.

LICENSE

This repo is under the Apache-2.0 license. For commercial use, please contact the authors.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Shell 1.0%