CUDA/OpenCL code generator for finite-field arithmetic over prime fields and elliptic curve arithmetic constructed with Rust.
Notes:
- Limbs are 32/64-bit long, by your choice.
- The library assumes that the most significant bit of your prime-field is unset. This allows for cheap reductions.
Generating CUDA/OpenCL codes for blstrs
Scalar elements:
use blstrs::Scalar;
let src = [
ec_gpu_gen::common(),
ec_gpu_gen::field::<Scalar, ec_gpu_gen::Limb64>("Fr")
].join("\n");
Generated interface (FIELD
is substituted with Fr
):
#define FIELD_LIMB_BITS ... // 32/64
#define FIELD_limb ... // uint/ulong, based on FIELD_LIMB_BITS
#define FIELD_LIMBS ... // Number of limbs for this field
#define FIELD_P ... // Normal form of field modulus
#define FIELD_ONE ... // Montomery form of one
#define FIELD_ZERO ... // Montomery/normal form of zero
#define FIELD_BITS (FIELD_LIMBS * FIELD_LIMB_BITS)
typedef struct { FIELD_limb val[FIELD_LIMBS]; } FIELD;
bool FIELD_gte(FIELD a, FIELD b); // Greater than or equal
bool FIELD_eq(FIELD a, FIELD b); // Equal
FIELD FIELD_sub(FIELD a, FIELD b); // Modular subtraction
FIELD FIELD_add(FIELD a, FIELD b); // Modular addition
FIELD FIELD_mul(FIELD a, FIELD b); // Modular multiplication
FIELD FIELD_sqr(FIELD a); // Modular squaring
FIELD FIELD_double(FIELD a); // Modular doubling
FIELD FIELD_pow(FIELD base, uint exponent); // Modular power
FIELD FIELD_pow_lookup(global FIELD *bases, uint exponent); // Modular power with lookup table for bases
FIELD FIELD_mont(FIELD a); // To montgomery form
FIELD FIELD_unmont(FIELD a); // To regular form
bool FIELD_get_bit(FIELD l, uint i); // Get `i`th bit (From most significant digit)
uint FIELD_get_bits(FIELD l, uint skip, uint window); // Get `window` consecutive bits, (Starting from `skip`th bit from most significant digit)
In order to run the tests, you need to enable one (or both) of tests-cuda
and tests-opencl
.
Licensed under either of
- Apache License, Version 2.0, (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.