This library implements common Neural Network components in the hyperbolic space (using the Poincare model). The implementation of this library uses Tensorflow as a backend and can easily be used with Keras and is meant to help Data Scientists, Machine Learning Engineers, Researchers and others to implement hyperbolic neural networks.
You can also use this library for uses other than neural networks by using the mathematical functions available in the Poincare class. In the future we may implement components that can be used in models other than neural networks. You can learn more about Hyperbolic networks here.
Install the library
pip install hyperlib
Creating a hyperbolic neural network using Keras:
import tensorflow as tf
from tensorflow import keras
from hyperlib.nn.layers.lin_hyp import LinearHyperbolic
from hyperlib.nn.optimizers.rsgd import RSGD
from hyperlib.manifold.poincare import Poincare
# Create layers
hyperbolic_layer_1 = LinearHyperbolic(32, Poincare(), 1)
hyperbolic_layer_2 = LinearHyperbolic(32, Poincare(), 1)
output_layer = LinearHyperbolic(10, Poincare(), 1)
# Create optimizer
optimizer = RSGD(learning_rate=0.1)
# Create model architecture
model = tf.keras.models.Sequential([
hyperbolic_layer_1,
hyperbolic_layer_2,
output_layer
])
# Compile the model with the Riemannian optimizer
model.compile(
optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
Using math functions on the Poincare ball:
import tensorflow as tf
from hyperlib.manifold.poincare import Poincare
p = Poincare()
# Create two matrices
a = tf.constant([[5.0,9.4,3.0],[2.0,5.2,8.9],[4.0,7.2,8.9]])
b = tf.constant([[4.8,1.0,2.3]])
# Matrix multiplication on the Poincare ball
curvature = 1
p.mobius_matvec(a, b, curvature)
Hyperlib will provide various ways to embed data in hyperbolic space (coming soon)
If your data has a natural metric you can use the TreeRep algorithm [5] to embed it in a weighted tree. Input a symmetric distance matrix, or a compressed distance matrix (e.g. use scipy.pdist).
import numpy as np
from hyperlib.embedding.graph import treerep
# Example: immunological distances between 8 mammals by Sarich
compressed_metric = np.array([
32., 48., 51., 50., 48., 98., 148.,
26., 34., 29., 33., 84., 136.,
42., 44., 44., 92., 152.,
44., 38., 86., 142.,
42., 89., 142.,
90., 142.,
148.
])
# outputs an adjacency list
tree = treerep(compressed_metric)
- Implement an Attention Mechanism
- Implement a Riemannian Adam Optimizer
- Lorentz Model
- Embeddings
- Remove casting of layer variables to tf.float64
[2] Nickel, M. and Kiela, D. Poincaré embeddings for learning hierarchical representations. NIPS 2017.
[3] Khrulkov, Mirvakhabova, Ustinova, Oseledets, Lempitsky. Hyperbolic Image Embeddings.
[4] Wei Peng, Varanka, Mostafa, Shi, Zhao. Hyperbolic Deep Neural Networks: A Survey.
[5] Rishi Sonthalia and Anna Gilbert. Tree! I am no Tree! I am a Low Dimensional Hyperbolic Embedding