Skip to content

Commit

Permalink
Merge branch 'fix/misc' into topic/misc
Browse files Browse the repository at this point in the history
Conflicts:
	sound/pci/hda/patch_realtek.c
  • Loading branch information
tiwai committed Feb 17, 2010
2 parents 291186e + 9d3415a commit 7fb3a06
Show file tree
Hide file tree
Showing 1,419 changed files with 35,743 additions and 13,879 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ modules.builtin
tags
TAGS
vmlinux
vmlinuz
System.map
Module.markers
Module.symvers
Expand Down
12 changes: 6 additions & 6 deletions Documentation/ABI/testing/ima_policy
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ Description:
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]

base: func:= [BPRM_CHECK][FILE_MMAP][INODE_PERMISSION]
base: func:= [BPRM_CHECK][FILE_MMAP][FILE_CHECK]
mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
fsmagic:= hex value
uid:= decimal value
Expand All @@ -40,11 +40,11 @@ Description:

measure func=BPRM_CHECK
measure func=FILE_MMAP mask=MAY_EXEC
measure func=INODE_PERM mask=MAY_READ uid=0
measure func=FILE_CHECK mask=MAY_READ uid=0

The default policy measures all executables in bprm_check,
all files mmapped executable in file_mmap, and all files
open for read by root in inode_permission.
open for read by root in do_filp_open.

Examples of LSM specific definitions:

Expand All @@ -54,8 +54,8 @@ Description:

dont_measure obj_type=var_log_t
dont_measure obj_type=auditd_log_t
measure subj_user=system_u func=INODE_PERM mask=MAY_READ
measure subj_role=system_r func=INODE_PERM mask=MAY_READ
measure subj_user=system_u func=FILE_CHECK mask=MAY_READ
measure subj_role=system_r func=FILE_CHECK mask=MAY_READ

Smack:
measure subj_user=_ func=INODE_PERM mask=MAY_READ
measure subj_user=_ func=FILE_CHECK mask=MAY_READ
4 changes: 2 additions & 2 deletions Documentation/cpu-freq/governors.txt
Original file line number Diff line number Diff line change
Expand Up @@ -145,8 +145,8 @@ show_sampling_rate_max: THIS INTERFACE IS DEPRECATED, DON'T USE IT.
up_threshold: defines what the average CPU usage between the samplings
of 'sampling_rate' needs to be for the kernel to make a decision on
whether it should increase the frequency. For example when it is set
to its default value of '80' it means that between the checking
intervals the CPU needs to be on average more than 80% in use to then
to its default value of '95' it means that between the checking
intervals the CPU needs to be on average more than 95% in use to then
decide that the CPU frequency needs to be increased.

ignore_nice_load: this parameter takes a value of '0' or '1'. When
Expand Down
4 changes: 2 additions & 2 deletions Documentation/fault-injection/fault-injection.txt
Original file line number Diff line number Diff line change
Expand Up @@ -143,8 +143,8 @@ o provide a way to configure fault attributes
failslab, fail_page_alloc, and fail_make_request use this way.
Helper functions:

init_fault_attr_entries(entries, attr, name);
void cleanup_fault_attr_entries(entries);
init_fault_attr_dentries(entries, attr, name);
void cleanup_fault_attr_dentries(entries);

- module parameters

Expand Down
49 changes: 49 additions & 0 deletions Documentation/feature-removal-schedule.txt
Original file line number Diff line number Diff line change
Expand Up @@ -493,3 +493,52 @@ Why: These two features use non-standard interfaces. There are the
Who: Corentin Chary <[email protected]>

----------------------------

What: usbvideo quickcam_messenger driver
When: 2.6.35
Files: drivers/media/video/usbvideo/quickcam_messenger.[ch]
Why: obsolete v4l1 driver replaced by gspca_stv06xx
Who: Hans de Goede <[email protected]>

----------------------------

What: ov511 v4l1 driver
When: 2.6.35
Files: drivers/media/video/ov511.[ch]
Why: obsolete v4l1 driver replaced by gspca_ov519
Who: Hans de Goede <[email protected]>

----------------------------

What: w9968cf v4l1 driver
When: 2.6.35
Files: drivers/media/video/w9968cf*.[ch]
Why: obsolete v4l1 driver replaced by gspca_ov519
Who: Hans de Goede <[email protected]>

----------------------------

What: ovcamchip sensor framework
When: 2.6.35
Files: drivers/media/video/ovcamchip/*
Why: Only used by obsoleted v4l1 drivers
Who: Hans de Goede <[email protected]>

----------------------------

What: stv680 v4l1 driver
When: 2.6.35
Files: drivers/media/video/stv680.[ch]
Why: obsolete v4l1 driver replaced by gspca_stv0680
Who: Hans de Goede <[email protected]>

----------------------------

What: zc0301 v4l driver
When: 2.6.35
Files: drivers/media/video/zc0301/*
Why: Duplicate functionality with the gspca_zc3xx driver, zc0301 only
supports 2 USB-ID's (because it only supports a limited set of
sensors) wich are also supported by the gspca_zc3xx driver
(which supports 53 USB-ID's in total)
Who: Hans de Goede <[email protected]>
2 changes: 0 additions & 2 deletions Documentation/filesystems/proc.txt
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,6 @@ read the file /proc/PID/status:
CapBnd: ffffffffffffffff
voluntary_ctxt_switches: 0
nonvoluntary_ctxt_switches: 1
Stack usage: 12 kB

This shows you nearly the same information you would get if you viewed it with
the ps command. In fact, ps uses the proc file system to obtain its
Expand Down Expand Up @@ -231,7 +230,6 @@ Table 1-2: Contents of the statm files (as of 2.6.30-rc7)
Mems_allowed_list Same as previous, but in "list format"
voluntary_ctxt_switches number of voluntary context switches
nonvoluntary_ctxt_switches number of non voluntary context switches
Stack usage: stack usage high water mark (round up to page size)
..............................................................................

Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
Expand Down
102 changes: 102 additions & 0 deletions Documentation/hwmon/amc6821
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
Kernel driver amc6821
=====================

Supported chips:
Texas Instruments AMC6821
Prefix: 'amc6821'
Addresses scanned: 0x18, 0x19, 0x1a, 0x2c, 0x2d, 0x2e, 0x4c, 0x4d, 0x4e
Datasheet: http://focus.ti.com/docs/prod/folders/print/amc6821.html

Authors:
Tomaz Mertelj <[email protected]>


Description
-----------

This driver implements support for the Texas Instruments amc6821 chip.
The chip has one on-chip and one remote temperature sensor and one pwm fan
regulator.
The pwm can be controlled either from software or automatically.

The driver provides the following sensor accesses in sysfs:

temp1_input ro on-chip temperature
temp1_min rw "
temp1_max rw "
temp1_crit rw "
temp1_min_alarm ro "
temp1_max_alarm ro "
temp1_crit_alarm ro "

temp2_input ro remote temperature
temp2_min rw "
temp2_max rw "
temp2_crit rw "
temp2_min_alarm ro "
temp2_max_alarm ro "
temp2_crit_alarm ro "
temp2_fault ro "

fan1_input ro tachometer speed
fan1_min rw "
fan1_max rw "
fan1_fault ro "
fan1_div rw Fan divisor can be either 2 or 4.

pwm1 rw pwm1
pwm1_enable rw regulator mode, 1=open loop, 2=fan controlled
by remote temperature, 3=fan controlled by
combination of the on-chip temperature and
remote-sensor temperature,
pwm1_auto_channels_temp ro 1 if pwm_enable==2, 3 if pwm_enable==3
pwm1_auto_point1_pwm ro Hardwired to 0, shared for both
temperature channels.
pwm1_auto_point2_pwm rw This value is shared for both temperature
channels.
pwm1_auto_point3_pwm rw Hardwired to 255, shared for both
temperature channels.

temp1_auto_point1_temp ro Hardwired to temp2_auto_point1_temp
which is rw. Below this temperature fan stops.
temp1_auto_point2_temp rw The low-temperature limit of the proportional
range. Below this temperature
pwm1 = pwm1_auto_point2_pwm. It can go from
0 degree C to 124 degree C in steps of
4 degree C. Read it out after writing to get
the actual value.
temp1_auto_point3_temp rw Above this temperature fan runs at maximum
speed. It can go from temp1_auto_point2_temp.
It can only have certain discrete values
which depend on temp1_auto_point2_temp and
pwm1_auto_point2_pwm. Read it out after
writing to get the actual value.

temp2_auto_point1_temp rw Must be between 0 degree C and 63 degree C and
it defines the passive cooling temperature.
Below this temperature the fan stops in
the closed loop mode.
temp2_auto_point2_temp rw The low-temperature limit of the proportional
range. Below this temperature
pwm1 = pwm1_auto_point2_pwm. It can go from
0 degree C to 124 degree C in steps
of 4 degree C.

temp2_auto_point3_temp rw Above this temperature fan runs at maximum
speed. It can only have certain discrete
values which depend on temp2_auto_point2_temp
and pwm1_auto_point2_pwm. Read it out after
writing to get actual value.


Module parameters
-----------------

If your board has a BIOS that initializes the amc6821 correctly, you should
load the module with: init=0.

If your board BIOS doesn't initialize the chip, or you want
different settings, you can set the following parameters:
init=1,
pwminv: 0 default pwm output, 1 inverts pwm output.

17 changes: 11 additions & 6 deletions Documentation/hwmon/k10temp
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@ Kernel driver k10temp

Supported chips:
* AMD Family 10h processors:
Socket F: Quad-Core/Six-Core/Embedded Opteron
Socket AM2+: Opteron, Phenom (II) X3/X4
Socket F: Quad-Core/Six-Core/Embedded Opteron (but see below)
Socket AM2+: Quad-Core Opteron, Phenom (II) X3/X4, Athlon X2 (but see below)
Socket AM3: Quad-Core Opteron, Athlon/Phenom II X2/X3/X4, Sempron II
Socket S1G3: Athlon II, Sempron, Turion II
* AMD Family 11h processors:
Expand Down Expand Up @@ -36,10 +36,15 @@ Description
This driver permits reading of the internal temperature sensor of AMD
Family 10h and 11h processors.

All these processors have a sensor, but on older revisions of Family 10h
processors, the sensor may return inconsistent values (erratum 319). The
driver will refuse to load on these revisions unless you specify the
"force=1" module parameter.
All these processors have a sensor, but on those for Socket F or AM2+,
the sensor may return inconsistent values (erratum 319). The driver
will refuse to load on these revisions unless you specify the "force=1"
module parameter.

Due to technical reasons, the driver can detect only the mainboard's
socket type, not the processor's actual capabilities. Therefore, if you
are using an AM3 processor on an AM2+ mainboard, you can safely use the
"force=1" parameter.

There is one temperature measurement value, available as temp1_input in
sysfs. It is measured in degrees Celsius with a resolution of 1/8th degree.
Expand Down
48 changes: 40 additions & 8 deletions Documentation/input/multi-touch-protocol.txt
Original file line number Diff line number Diff line change
Expand Up @@ -27,12 +27,30 @@ set of events/packets.

A set of ABS_MT events with the desired properties is defined. The events
are divided into categories, to allow for partial implementation. The
minimum set consists of ABS_MT_TOUCH_MAJOR, ABS_MT_POSITION_X and
ABS_MT_POSITION_Y, which allows for multiple fingers to be tracked. If the
device supports it, the ABS_MT_WIDTH_MAJOR may be used to provide the size
of the approaching finger. Anisotropy and direction may be specified with
ABS_MT_TOUCH_MINOR, ABS_MT_WIDTH_MINOR and ABS_MT_ORIENTATION. The
ABS_MT_TOOL_TYPE may be used to specify whether the touching tool is a
minimum set consists of ABS_MT_POSITION_X and ABS_MT_POSITION_Y, which
allows for multiple fingers to be tracked. If the device supports it, the
ABS_MT_TOUCH_MAJOR and ABS_MT_WIDTH_MAJOR may be used to provide the size
of the contact area and approaching finger, respectively.

The TOUCH and WIDTH parameters have a geometrical interpretation; imagine
looking through a window at someone gently holding a finger against the
glass. You will see two regions, one inner region consisting of the part
of the finger actually touching the glass, and one outer region formed by
the perimeter of the finger. The diameter of the inner region is the
ABS_MT_TOUCH_MAJOR, the diameter of the outer region is
ABS_MT_WIDTH_MAJOR. Now imagine the person pressing the finger harder
against the glass. The inner region will increase, and in general, the
ratio ABS_MT_TOUCH_MAJOR / ABS_MT_WIDTH_MAJOR, which is always smaller than
unity, is related to the finger pressure. For pressure-based devices,
ABS_MT_PRESSURE may be used to provide the pressure on the contact area
instead.

In addition to the MAJOR parameters, the oval shape of the finger can be
described by adding the MINOR parameters, such that MAJOR and MINOR are the
major and minor axis of an ellipse. Finally, the orientation of the oval
shape can be describe with the ORIENTATION parameter.

The ABS_MT_TOOL_TYPE may be used to specify whether the touching tool is a
finger or a pen or something else. Devices with more granular information
may specify general shapes as blobs, i.e., as a sequence of rectangular
shapes grouped together by an ABS_MT_BLOB_ID. Finally, for the few devices
Expand All @@ -42,11 +60,9 @@ report finger tracking from hardware [5].
Here is what a minimal event sequence for a two-finger touch would look
like:

ABS_MT_TOUCH_MAJOR
ABS_MT_POSITION_X
ABS_MT_POSITION_Y
SYN_MT_REPORT
ABS_MT_TOUCH_MAJOR
ABS_MT_POSITION_X
ABS_MT_POSITION_Y
SYN_MT_REPORT
Expand Down Expand Up @@ -87,6 +103,12 @@ the contact. The ratio ABS_MT_TOUCH_MAJOR / ABS_MT_WIDTH_MAJOR approximates
the notion of pressure. The fingers of the hand and the palm all have
different characteristic widths [1].

ABS_MT_PRESSURE

The pressure, in arbitrary units, on the contact area. May be used instead
of TOUCH and WIDTH for pressure-based devices or any device with a spatial
signal intensity distribution.

ABS_MT_ORIENTATION

The orientation of the ellipse. The value should describe a signed quarter
Expand Down Expand Up @@ -170,6 +192,16 @@ There are a few devices that support trackingID in hardware. User space can
make use of these native identifiers to reduce bandwidth and cpu usage.


Gestures
--------

In the specific application of creating gesture events, the TOUCH and WIDTH
parameters can be used to, e.g., approximate finger pressure or distinguish
between index finger and thumb. With the addition of the MINOR parameters,
one can also distinguish between a sweeping finger and a pointing finger,
and with ORIENTATION, one can detect twisting of fingers.


Notes
-----

Expand Down
Loading

0 comments on commit 7fb3a06

Please sign in to comment.