Implementations of AE(Auto-Encoder), VAE(Variational AE) and CVAE(Conditional VAE)
python run_main.py --ae_type AE --num_epochs 150 --latent_dim 2
Reconsructed Image | |
Distribution of z |
python run_main.py --ae_type VAE --num_epochs 150 --latent_dim 2
Reconsructed Image | |
Distribution of z |
python run_main.py --ae_type CVAE --num_epochs 150 --latent_dim 2
Reconsructed Image | |
Distribution of z |
Visualizations of generated images from (z_1, z_2) ∈ [-2, 2] uniform distribution.
Visualizations of generated images from z_1=0, and z_2 ∈ [-3, 3] uniform distribution.
tensorflow 2.0.0-alpha0
or higher- python packages:
numpy
,matplotlib
python run_main.py --ae_type <autoencoder_type>
Example: python run main.py --ae_type AE
Required:
--ae_type
: Type of autoencoder, must be in ['AE', 'VAE', 'CVAE']
Optional:
--latent_dim
: Dimension of latent vector(z). Default:2
--num_epochs
: The number of epochs to run. Default:100
--batch_size
: The size of batch. Default:1000
--learn_rate
: Learning rate of Adam optimizer. Default:1e-4
[1] https://github.com/hwalsuklee/tensorflow-mnist-VAE
[2] https://www.slideshare.net/NaverEngineering/ss-96581209
[3] https://www.tensorflow.org/alpha/tutorials/generative/cvae