Skip to content

alishakiba/galois

 
 

Repository files navigation

Galois: A performant numpy extension for Galois fields

PyPI version Supported Versions Documentation Status Lint Test Codecov

A Python 3 package for Galois field arithmetic.

Motivation

The project goals are for galois to be:

  • General: Support all Galois field types: GF(2), GF(2^m), GF(p), GF(p^m)
  • Accurate: Guarantee arithmetic accuracy -- tests against industry-standard mathematics software
  • Compatible: Seamlessley integrate with numpy arrays -- arithmetic operators (x + y), broadcasting, view casting, type casting, ufuncs, methods
  • Performant: Run as fast as numpy or C -- avoids the speed sinkhole of Python for loops
  • Reconfigurable: Dynamically optimize performance based on data size and processor (single-core CPU, multi-core CPU, or GPU)

Installation

The latest version of galois can be installed from PyPI via pip.

pip3 install galois

For development, the lastest code on master can be checked out and installed locally in "editable" mode.

git clone https://github.com/mhostetter/galois.git
pip3 install -e galois

Basic Usage

Galois field array construction

Construct Galois field array classes using the GF_factory() class factory function.

>>> import numpy as np
>>> import galois

>>> GF = galois.GF_factory(31, 1)
>>> print(GF)
<Galois Field: GF(31^1), prim_poly = x + 28 (None decimal)>

>>> print(GF.alpha)
3

>>> print(GF.prim_poly)
Poly(x + 28 , GF31)

Create arrays from existing numpy arrays.

# Represents an existing numpy array
>>> np_x = np.random.randint(0, GF.order, 10, dtype=int); np_x
array([ 6, 28,  2, 23, 17,  6,  3,  0, 10,  4])

# Explicit Galois field construction
>>> GF(np_x)
GF31([ 6, 28,  2, 23, 17,  6,  3,  0, 10,  4])

# Numpy view casting to a Galois field, supported for integer dtypes
>>> np_x.view(GF)
GF31([ 6, 28,  2, 23, 17,  6,  3,  0, 10,  4])

Or, create Galois field arrays using alternate constructors.

>>> x = GF.Random(10); x
GF31([20, 29, 27, 20, 27,  4, 29, 25, 11, 28])

# Construct a random array without zeros to prevent ZeroDivisonError later on
>>> y = GF.Random(10, low=1); y
GF31([28, 22, 22,  6,  7,  3,  3, 13, 29, 30])

Galois field array arithmetic

Galois field arrays support traditional numpy array operations

>>> x + y
GF31([17, 20, 18, 26,  3,  7,  1,  7,  9, 27])

>>> -x
GF31([11,  2,  4, 11,  4, 27,  2,  6, 20,  3])

# Multiply a Galois field array with any integer
>>> x * -3  # NOTE: -3 is outside the field
GF31([ 2,  6, 12,  2, 12, 19,  6, 18, 29,  9])

>>> 1 / y
GF31([10, 24, 24, 26,  9, 21, 21, 12, 15, 30])

# Exponentiate a Galois field array with any integer
>>> y ** -2  # NOTE: -2 is outside the field
GF31([ 7, 18, 18, 25, 19,  7,  7, 20,  8,  1])

# Log base alpha (the field's primitive element)
>>> np.log(y)
array([16, 17, 17, 25, 28,  1,  1, 11,  9, 15])

Galois field arrays support numpy array broadcasting.

>>> a = GF.Random((2,5)); a
GF31([[ 0, 24,  3,  0,  1],
      [14,  5, 19, 22, 30]])

>>> b = GF.Random(5); b
GF31([23,  7, 28, 23, 19])

>>> a + b
GF31([[23,  0,  0, 23, 20],
      [ 6, 12, 16, 14, 18]])

Galois field arrays also support numpy ufunc methods.

# Valid ufunc methods include "reduce", "accumulate", "reduceat", "outer", "at"
>>> np.add.reduce(a, axis=0)
GF31([14, 29, 22, 22,  0])

>>> np.multiply.outer(x, y)
GF31([[ 2,  6,  6, 27, 16, 29, 29, 12, 22, 11],
      [ 6, 18, 18, 19, 17, 25, 25,  5,  4,  2],
      [12,  5,  5,  7,  3, 19, 19, 10,  8,  4],
      [ 2,  6,  6, 27, 16, 29, 29, 12, 22, 11],
      [12,  5,  5,  7,  3, 19, 19, 10,  8,  4],
      [19, 26, 26, 24, 28, 12, 12, 21, 23, 27],
      [ 6, 18, 18, 19, 17, 25, 25,  5,  4,  2],
      [18, 23, 23, 26, 20, 13, 13, 15, 12,  6],
      [29, 25, 25,  4, 15,  2,  2, 19,  9, 20],
      [ 9, 27, 27, 13, 10, 22, 22, 23,  6,  3]])

Galois field polynomial construction

Construct Galois field polynomials.

# Construct a polynomial by specifying all the coefficients in descending-degree order
>>> p = galois.Poly([1, 22, 0, 17, 25], field=GF); p
Poly(x^4 + 22x^3 + 17x + 25 , GF31)

# Construct a polynomial by specifying only the non-zero coefficients
>>> q = galois.Poly.NonZero([4, 14],  [2, 0], field=GF); q
Poly(4x^2 + 14 , GF31)

Galois field polynomial arithmetic

Galois field polynomial arithmetic is similar to numpy array operations.

>>> p + q
Poly(x^4 + 22x^3 + 4x^2 + 17x + 8 , GF31)

>>> p // q, p % q
(Poly(8x^2 + 21x + 3 , GF31), Poly(2x + 14 , GF31))

>>> p ** 2
Poly(x^8 + 13x^7 + 19x^6 + 3x^5 + 23x^4 + 15x^3 + 10x^2 + 13x + 5 , GF31)

Galois field polynomials can also be evaluated at constants or arrays.

>>> p(1)
GF31(3)

>>> p(a)
GF31([[ 1, 18, 17, 16,  5],
      [ 8, 21, 17, 23, 18]])

Performance

GF(31) addition speed test

>>> import numpy as np
>>> import galois

>>> GFp = galois.GF_factory(31, 1)
>>> print(GFp)
<Galois Field: GF(31^1), prim_poly = x + 28 (None decimal)>

>>> def construct_arrays(GF, N):
...     order = GF.order
...
...     a = np.random.randint(0, order, N, dtype=int)
...     b = np.random.randint(0, order, N, dtype=int)
...
...     ga = GF(a)
...     gb = GF(b)
...
...     return a, b, ga, gb, order

>>> def pure_python_add(a, b, modulus):
...     c = np.zeros(a.size, dtype=a.dtype)
...     for i in range(a.size):
...         c[i] = (a[i] + b[i]) % modulus
...     return c

>>> N = int(10e3)
... a, b, ga, gb, order = construct_arrays(GFp, N)
...
... print(f"Pure python addition in GF({order})")
... %timeit pure_python_add(a, b, order)
...
... print(f"\nNative numpy addition in GF({order})")
... %timeit (a + b) % order
...
... print(f"\n`galois` implementation of addition in GF({order})")
... %timeit ga + gb
Pure python addition in GF(31)
5.84 ms ± 218 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Native numpy addition in GF(31)
112 µs ± 14.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

`galois` implementation of addition in GF(31)
73.1 µs ± 746 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

About

A performant numpy extension for Galois fields

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%