forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refine image classification prediction code.
ISSUE=4596311 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1431 1ad973e4-5ce8-4261-8a94-b56d1f490c56
- Loading branch information
1 parent
5db9e59
commit 13f4602
Showing
5 changed files
with
171 additions
and
35 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os,sys | ||
import numpy as np | ||
import logging | ||
from PIL import Image | ||
from optparse import OptionParser | ||
|
||
import paddle.utils.image_util as image_util | ||
|
||
from py_paddle import swig_paddle, util | ||
from py_paddle import DataProviderWrapperConverter | ||
from paddle.trainer.PyDataProviderWrapper import DenseSlot | ||
from paddle.trainer.config_parser import parse_config | ||
|
||
logging.basicConfig(format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') | ||
logging.getLogger().setLevel(logging.INFO) | ||
|
||
class ImageClassifier(): | ||
def __init__(self, | ||
train_conf, | ||
use_gpu=True, | ||
model_dir=None, | ||
resize_dim=None, | ||
crop_dim=None, | ||
mean_file=None, | ||
oversample=False, | ||
is_color=True): | ||
""" | ||
train_conf: network configure. | ||
model_dir: string, directory of model. | ||
resize_dim: int, resized image size. | ||
crop_dim: int, crop size. | ||
mean_file: string, image mean file. | ||
oversample: bool, oversample means multiple crops, namely five | ||
patches (the four corner patches and the center | ||
patch) as well as their horizontal reflections, | ||
ten crops in all. | ||
""" | ||
self.train_conf = train_conf | ||
self.model_dir = model_dir | ||
if model_dir is None: | ||
self.model_dir = os.path.dirname(train_conf) | ||
|
||
self.resize_dim = resize_dim | ||
self.crop_dims = [crop_dim, crop_dim] | ||
self.oversample = oversample | ||
self.is_color = is_color | ||
|
||
self.transformer = image_util.ImageTransformer(is_color = is_color) | ||
self.transformer.set_transpose((2,0,1)) | ||
|
||
self.mean_file = mean_file | ||
mean = np.load(self.mean_file)['data_mean'] | ||
mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1]) | ||
self.transformer.set_mean(mean) # mean pixel | ||
gpu = 1 if use_gpu else 0 | ||
conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (gpu) | ||
conf = parse_config(train_conf, conf_args) | ||
swig_paddle.initPaddle("--use_gpu=%d" % (gpu)) | ||
self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config) | ||
assert isinstance(self.network, swig_paddle.GradientMachine) | ||
self.network.loadParameters(self.model_dir) | ||
|
||
data_size = 3 * self.crop_dims[0] * self.crop_dims[1] | ||
slots = [DenseSlot(data_size)] | ||
self.converter = util.DataProviderWrapperConverter(False, slots) | ||
|
||
def get_data(self, img_path): | ||
""" | ||
1. load image from img_path. | ||
2. resize or oversampling. | ||
3. transformer data: transpose, sub mean. | ||
return K x H x W ndarray. | ||
img_path: image path. | ||
""" | ||
image = image_util.load_image(img_path, self.is_color) | ||
if self.oversample: | ||
# image_util.resize_image: short side is self.resize_dim | ||
image = image_util.resize_image(image, self.resize_dim) | ||
image = np.array(image) | ||
input = np.zeros((1, image.shape[0], image.shape[1], 3), | ||
dtype=np.float32) | ||
input[0] = image.astype(np.float32) | ||
input = image_util.oversample(input, self.crop_dims) | ||
else: | ||
image = image.resize(self.crop_dims, Image.ANTIALIAS) | ||
input = np.zeros((1, self.crop_dims[0], self.crop_dims[1], 3), | ||
dtype=np.float32) | ||
input[0] = np.array(image).astype(np.float32) | ||
|
||
data_in = [] | ||
for img in input: | ||
img = self.transformer.transformer(img).flatten() | ||
data_in.append([img.tolist()]) | ||
return data_in | ||
|
||
def forward(self, input_data): | ||
in_arg = self.converter(input_data) | ||
return self.network.forwardTest(in_arg) | ||
|
||
def forward(self, data, output_layer): | ||
""" | ||
input_data: py_paddle input data. | ||
output_layer: specify the name of probability, namely the layer with | ||
softmax activation. | ||
return: the predicting probability of each label. | ||
""" | ||
input = self.converter(data) | ||
self.network.forwardTest(input) | ||
output = self.network.getLayerOutputs(output_layer) | ||
# For oversampling, average predictions across crops. | ||
# If not, the shape of output[name]: (1, class_number), | ||
# the mean is also applicable. | ||
return output[output_layer].mean(0) | ||
|
||
def predict(self, image=None, output_layer=None): | ||
assert isinstance(image, basestring) | ||
assert isinstance(output_layer, basestring) | ||
data = self.get_data(image) | ||
prob = self.forward(data, output_layer) | ||
lab = np.argsort(-prob) | ||
logging.info("Label of %s is: %d", image, lab[0]) | ||
|
||
if __name__ == '__main__': | ||
image_size=32 | ||
crop_size=32 | ||
multi_crop=True | ||
config="vgg_16_cifar.py" | ||
output_layer="__fc_layer_1__" | ||
mean_path="data/cifar-out/batches/batches.meta" | ||
model_path=sys.argv[1] | ||
image=sys.argv[2] | ||
use_gpu=bool(int(sys.argv[3])) | ||
|
||
obj = ImageClassifier(train_conf=config, | ||
model_dir=model_path, | ||
resize_dim=image_size, | ||
crop_dim=crop_size, | ||
mean_file=mean_path, | ||
use_gpu=use_gpu, | ||
oversample=multi_crop) | ||
obj.predict(image, output_layer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters