forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
323 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
Deep Graph Infomax (DGI) | ||
======================== | ||
|
||
- Paper link: [https://arxiv.org/abs/1809.10341](https://arxiv.org/abs/1809.10341) | ||
- Author's code repo (in Pytorch): | ||
[https://github.com/PetarV-/DGI](https://github.com/PetarV-/DGI) | ||
|
||
Dependencies | ||
------------ | ||
- PyTorch 0.4.1+ | ||
- requests | ||
|
||
```bash | ||
pip install torch requests | ||
``` | ||
|
||
How to run | ||
---------- | ||
|
||
Run with following: | ||
|
||
```bash | ||
python train.py --dataset=cora --gpu=0 --self-loop | ||
``` | ||
|
||
```bash | ||
python train.py --dataset=citeseer --gpu=0 | ||
``` | ||
|
||
```bash | ||
python train.py --dataset=pubmed --gpu=0 | ||
``` | ||
|
||
Results | ||
------- | ||
* cora: ~81.6 (81.2-82.1) (paper: 82.3) | ||
* citeseer: ~69.4 (paper: 71.8) | ||
* pubmed: ~76.1 (paper: 76.8) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
""" | ||
Deep Graph Infomax in DGL | ||
References | ||
---------- | ||
Papers: https://arxiv.org/abs/1809.10341 | ||
Author's code: https://github.com/PetarV-/DGI | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
import math | ||
from gcn import GCN | ||
|
||
class Encoder(nn.Module): | ||
def __init__(self, g, in_feats, n_hidden, n_layers, activation, dropout): | ||
super(Encoder, self).__init__() | ||
self.g = g | ||
self.conv = GCN(g, in_feats, n_hidden, n_hidden, n_layers, activation, dropout) | ||
|
||
def forward(self, features, corrupt=False): | ||
if corrupt: | ||
perm = torch.randperm(self.g.number_of_nodes()) | ||
features = features[perm] | ||
features = self.conv(features) | ||
return features | ||
|
||
|
||
class Discriminator(nn.Module): | ||
def __init__(self, n_hidden): | ||
super(Discriminator, self).__init__() | ||
self.weight = nn.Parameter(torch.Tensor(n_hidden, n_hidden)) | ||
self.reset_parameters() | ||
|
||
def uniform(self, size, tensor): | ||
bound = 1.0 / math.sqrt(size) | ||
if tensor is not None: | ||
tensor.data.uniform_(-bound, bound) | ||
|
||
def reset_parameters(self): | ||
size = self.weight.size(0) | ||
self.uniform(size, self.weight) | ||
|
||
def forward(self, features, summary): | ||
features = torch.matmul(features, torch.matmul(self.weight, summary)) | ||
return features | ||
|
||
|
||
class DGI(nn.Module): | ||
def __init__(self, g, in_feats, n_hidden, n_layers, activation, dropout): | ||
super(DGI, self).__init__() | ||
self.encoder = Encoder(g, in_feats, n_hidden, n_layers, activation, dropout) | ||
self.discriminator = Discriminator(n_hidden) | ||
self.loss = nn.BCEWithLogitsLoss() | ||
|
||
def forward(self, features): | ||
positive = self.encoder(features, corrupt=False) | ||
negative = self.encoder(features, corrupt=True) | ||
summary = torch.sigmoid(positive.mean(dim=0)) | ||
|
||
positive = self.discriminator(positive, summary) | ||
negative = self.discriminator(negative, summary) | ||
|
||
l1 = self.loss(positive, torch.ones_like(positive)) | ||
l2 = self.loss(negative, torch.zeros_like(negative)) | ||
|
||
return l1 + l2 | ||
|
||
|
||
class Classifier(nn.Module): | ||
def __init__(self, n_hidden, n_classes): | ||
super(Classifier, self).__init__() | ||
self.fc = nn.Linear(n_hidden, n_classes) | ||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
self.fc.reset_parameters() | ||
|
||
def forward(self, features): | ||
features = self.fc(features) | ||
return torch.log_softmax(features, dim=-1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
""" | ||
This code was copied from the GCN implementation in DGL examples. | ||
""" | ||
import torch | ||
import torch.nn as nn | ||
from dgl.nn.pytorch import GraphConv | ||
|
||
class GCN(nn.Module): | ||
def __init__(self, | ||
g, | ||
in_feats, | ||
n_hidden, | ||
n_classes, | ||
n_layers, | ||
activation, | ||
dropout): | ||
super(GCN, self).__init__() | ||
self.g = g | ||
self.layers = nn.ModuleList() | ||
# input layer | ||
self.layers.append(GraphConv(in_feats, n_hidden, activation=activation)) | ||
# hidden layers | ||
for i in range(n_layers - 1): | ||
self.layers.append(GraphConv(n_hidden, n_hidden, activation=activation)) | ||
# output layer | ||
self.layers.append(GraphConv(n_hidden, n_classes)) | ||
self.dropout = nn.Dropout(p=dropout) | ||
|
||
def forward(self, features): | ||
h = features | ||
for i, layer in enumerate(self.layers): | ||
if i != 0: | ||
h = self.dropout(h) | ||
h = layer(h, self.g) | ||
return h |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
import argparse, time | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from dgl import DGLGraph | ||
from dgl.data import register_data_args, load_data | ||
from dgi import DGI, Classifier | ||
|
||
def evaluate(model, features, labels, mask): | ||
model.eval() | ||
with torch.no_grad(): | ||
logits = model(features) | ||
logits = logits[mask] | ||
labels = labels[mask] | ||
_, indices = torch.max(logits, dim=1) | ||
correct = torch.sum(indices == labels) | ||
return correct.item() * 1.0 / len(labels) | ||
|
||
def main(args): | ||
# load and preprocess dataset | ||
data = load_data(args) | ||
features = torch.FloatTensor(data.features) | ||
labels = torch.LongTensor(data.labels) | ||
train_mask = torch.ByteTensor(data.train_mask) | ||
val_mask = torch.ByteTensor(data.val_mask) | ||
test_mask = torch.ByteTensor(data.test_mask) | ||
in_feats = features.shape[1] | ||
n_classes = data.num_labels | ||
n_edges = data.graph.number_of_edges() | ||
|
||
if args.gpu < 0: | ||
cuda = False | ||
else: | ||
cuda = True | ||
torch.cuda.set_device(args.gpu) | ||
features = features.cuda() | ||
labels = labels.cuda() | ||
train_mask = train_mask.cuda() | ||
val_mask = val_mask.cuda() | ||
test_mask = test_mask.cuda() | ||
|
||
# graph preprocess | ||
g = data.graph | ||
# add self loop | ||
if args.self_loop: | ||
g.remove_edges_from(g.selfloop_edges()) | ||
g.add_edges_from(zip(g.nodes(), g.nodes())) | ||
g = DGLGraph(g) | ||
n_edges = g.number_of_edges() | ||
|
||
# create DGI model | ||
dgi = DGI(g, | ||
in_feats, | ||
args.n_hidden, | ||
args.n_layers, | ||
nn.PReLU(args.n_hidden), | ||
args.dropout) | ||
|
||
if cuda: | ||
dgi.cuda() | ||
|
||
dgi_optimizer = torch.optim.Adam(dgi.parameters(), | ||
lr=args.dgi_lr, | ||
weight_decay=args.weight_decay) | ||
|
||
# train deep graph infomax | ||
cnt_wait = 0 | ||
best = 1e9 | ||
best_t = 0 | ||
dur = [] | ||
for epoch in range(args.n_dgi_epochs): | ||
dgi.train() | ||
if epoch >= 3: | ||
t0 = time.time() | ||
|
||
dgi_optimizer.zero_grad() | ||
loss = dgi(features) | ||
loss.backward() | ||
dgi_optimizer.step() | ||
|
||
if loss < best: | ||
best = loss | ||
best_t = epoch | ||
cnt_wait = 0 | ||
torch.save(dgi.state_dict(), 'best_dgi.pkl') | ||
else: | ||
cnt_wait += 1 | ||
|
||
if cnt_wait == args.patience: | ||
print('Early stopping!') | ||
break | ||
|
||
if epoch >= 3: | ||
dur.append(time.time() - t0) | ||
|
||
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | " | ||
"ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(), | ||
n_edges / np.mean(dur) / 1000)) | ||
|
||
# create classifier model | ||
classifier = Classifier(args.n_hidden, n_classes) | ||
if cuda: | ||
classifier.cuda() | ||
|
||
classifier_optimizer = torch.optim.Adam(classifier.parameters(), | ||
lr=args.classifier_lr, | ||
weight_decay=args.weight_decay) | ||
|
||
# train classifier | ||
print('Loading {}th epoch'.format(best_t)) | ||
dgi.load_state_dict(torch.load('best_dgi.pkl')) | ||
embeds = dgi.encoder(features, corrupt=False) | ||
embeds = embeds.detach() | ||
dur = [] | ||
for epoch in range(args.n_classifier_epochs): | ||
classifier.train() | ||
if epoch >= 3: | ||
t0 = time.time() | ||
|
||
classifier_optimizer.zero_grad() | ||
preds = classifier(embeds) | ||
loss = F.nll_loss(preds[train_mask], labels[train_mask]) | ||
loss.backward() | ||
classifier_optimizer.step() | ||
|
||
if epoch >= 3: | ||
dur.append(time.time() - t0) | ||
|
||
acc = evaluate(classifier, embeds, labels, val_mask) | ||
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " | ||
"ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(), | ||
acc, n_edges / np.mean(dur) / 1000)) | ||
|
||
print() | ||
acc = evaluate(classifier, embeds, labels, test_mask) | ||
print("Test Accuracy {:.4f}".format(acc)) | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='DGI') | ||
register_data_args(parser) | ||
parser.add_argument("--dropout", type=float, default=0., | ||
help="dropout probability") | ||
parser.add_argument("--gpu", type=int, default=-1, | ||
help="gpu") | ||
parser.add_argument("--dgi-lr", type=float, default=1e-3, | ||
help="dgi learning rate") | ||
parser.add_argument("--classifier-lr", type=float, default=1e-2, | ||
help="classifier learning rate") | ||
parser.add_argument("--n-dgi-epochs", type=int, default=300, | ||
help="number of training epochs") | ||
parser.add_argument("--n-classifier-epochs", type=int, default=300, | ||
help="number of training epochs") | ||
parser.add_argument("--n-hidden", type=int, default=512, | ||
help="number of hidden gcn units") | ||
parser.add_argument("--n-layers", type=int, default=1, | ||
help="number of hidden gcn layers") | ||
parser.add_argument("--weight-decay", type=float, default=0., | ||
help="Weight for L2 loss") | ||
parser.add_argument("--patience", type=int, default=20, | ||
help="early stop patience condition") | ||
parser.add_argument("--self-loop", action='store_true', | ||
help="graph self-loop (default=False)") | ||
parser.set_defaults(self_loop=False) | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters