forked from neuraloperator/Geo-FNO
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
24 changed files
with
5,307 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
import math | ||
import torch | ||
from torch import Tensor | ||
from typing import List, Optional | ||
from torch.optim.optimizer import Optimizer | ||
|
||
|
||
def adam(params: List[Tensor], | ||
grads: List[Tensor], | ||
exp_avgs: List[Tensor], | ||
exp_avg_sqs: List[Tensor], | ||
max_exp_avg_sqs: List[Tensor], | ||
state_steps: List[int], | ||
*, | ||
amsgrad: bool, | ||
beta1: float, | ||
beta2: float, | ||
lr: float, | ||
weight_decay: float, | ||
eps: float): | ||
r"""Functional API that performs Adam algorithm computation. | ||
See :class:`~torch.optim.Adam` for details. | ||
""" | ||
|
||
for i, param in enumerate(params): | ||
|
||
grad = grads[i] | ||
exp_avg = exp_avgs[i] | ||
exp_avg_sq = exp_avg_sqs[i] | ||
step = state_steps[i] | ||
|
||
bias_correction1 = 1 - beta1 ** step | ||
bias_correction2 = 1 - beta2 ** step | ||
|
||
if weight_decay != 0: | ||
grad = grad.add(param, alpha=weight_decay) | ||
|
||
# Decay the first and second moment running average coefficient | ||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | ||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2) | ||
if amsgrad: | ||
# Maintains the maximum of all 2nd moment running avg. till now | ||
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i]) | ||
# Use the max. for normalizing running avg. of gradient | ||
denom = (max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)).add_(eps) | ||
else: | ||
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) | ||
|
||
step_size = lr / bias_correction1 | ||
|
||
param.addcdiv_(exp_avg, denom, value=-step_size) | ||
|
||
|
||
class Adam(Optimizer): | ||
r"""Implements Adam algorithm. | ||
It has been proposed in `Adam: A Method for Stochastic Optimization`_. | ||
The implementation of the L2 penalty follows changes proposed in | ||
`Decoupled Weight Decay Regularization`_. | ||
Args: | ||
params (iterable): iterable of parameters to optimize or dicts defining | ||
parameter groups | ||
lr (float, optional): learning rate (default: 1e-3) | ||
betas (Tuple[float, float], optional): coefficients used for computing | ||
running averages of gradient and its square (default: (0.9, 0.999)) | ||
eps (float, optional): term added to the denominator to improve | ||
numerical stability (default: 1e-8) | ||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | ||
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | ||
algorithm from the paper `On the Convergence of Adam and Beyond`_ | ||
(default: False) | ||
.. _Adam\: A Method for Stochastic Optimization: | ||
https://arxiv.org/abs/1412.6980 | ||
.. _Decoupled Weight Decay Regularization: | ||
https://arxiv.org/abs/1711.05101 | ||
.. _On the Convergence of Adam and Beyond: | ||
https://openreview.net/forum?id=ryQu7f-RZ | ||
""" | ||
|
||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, | ||
weight_decay=0, amsgrad=False): | ||
if not 0.0 <= lr: | ||
raise ValueError("Invalid learning rate: {}".format(lr)) | ||
if not 0.0 <= eps: | ||
raise ValueError("Invalid epsilon value: {}".format(eps)) | ||
if not 0.0 <= betas[0] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | ||
if not 0.0 <= betas[1] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | ||
if not 0.0 <= weight_decay: | ||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | ||
defaults = dict(lr=lr, betas=betas, eps=eps, | ||
weight_decay=weight_decay, amsgrad=amsgrad) | ||
super(Adam, self).__init__(params, defaults) | ||
|
||
def __setstate__(self, state): | ||
super(Adam, self).__setstate__(state) | ||
for group in self.param_groups: | ||
group.setdefault('amsgrad', False) | ||
|
||
@torch.no_grad() | ||
def step(self, closure=None): | ||
"""Performs a single optimization step. | ||
Args: | ||
closure (callable, optional): A closure that reevaluates the model | ||
and returns the loss. | ||
""" | ||
loss = None | ||
if closure is not None: | ||
with torch.enable_grad(): | ||
loss = closure() | ||
|
||
for group in self.param_groups: | ||
params_with_grad = [] | ||
grads = [] | ||
exp_avgs = [] | ||
exp_avg_sqs = [] | ||
max_exp_avg_sqs = [] | ||
state_steps = [] | ||
beta1, beta2 = group['betas'] | ||
|
||
for p in group['params']: | ||
if p.grad is not None: | ||
params_with_grad.append(p) | ||
if p.grad.is_sparse: | ||
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') | ||
grads.append(p.grad) | ||
|
||
state = self.state[p] | ||
# Lazy state initialization | ||
if len(state) == 0: | ||
state['step'] = 0 | ||
# Exponential moving average of gradient values | ||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
# Exponential moving average of squared gradient values | ||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
if group['amsgrad']: | ||
# Maintains max of all exp. moving avg. of sq. grad. values | ||
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
|
||
exp_avgs.append(state['exp_avg']) | ||
exp_avg_sqs.append(state['exp_avg_sq']) | ||
|
||
if group['amsgrad']: | ||
max_exp_avg_sqs.append(state['max_exp_avg_sq']) | ||
|
||
# update the steps for each param group update | ||
state['step'] += 1 | ||
# record the step after step update | ||
state_steps.append(state['step']) | ||
|
||
adam(params_with_grad, | ||
grads, | ||
exp_avgs, | ||
exp_avg_sqs, | ||
max_exp_avg_sqs, | ||
state_steps, | ||
amsgrad=group['amsgrad'], | ||
beta1=beta1, | ||
beta2=beta2, | ||
lr=group['lr'], | ||
weight_decay=group['weight_decay'], | ||
eps=group['eps']) | ||
return loss |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Oops, something went wrong.