Skip to content

Commit

Permalink
mm,memory_hotplug: allocate memmap from the added memory range
Browse files Browse the repository at this point in the history
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section.  Currently, alloc_pages_node() is used
for those allocations.

This has some disadvantages:
 a) an existing memory is consumed for that purpose
    (eg: ~2MB per 128MB memory section on x86_64)
    This can even lead to extreme cases where system goes OOM because
    the physically hotplugged memory depletes the available memory before
    it is onlined.
 b) if the whole node is movable then we have off-node struct pages
    which has performance drawbacks.
 c) It might be there are no PMD_ALIGNED chunks so memmap array gets
    populated with base pages.

This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.

Vmemap page tables can map arbitrary memory.  That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables.  This implementation uses the beginning of the hotplugged memory
for that purpose.

There are some non-obviously things to consider though.

Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed.  This means that the reserved physical range is not
online although it is used.  The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns.  The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined.  For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g.  vmemmap
page tables).

The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory).  That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.

As per above, the functions that are introduced are:

 - mhp_init_memmap_on_memory:
   Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
   kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
   fully span.

 - mhp_deinit_memmap_on_memory:
   Offlines as many sections as vmemmap pages fully span, removes the
   range from zhe zone by remove_pfn_range_from_zone(), and calls
   kasan_remove_zero_shadow() for the range.

The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages().  Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory().  Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.

On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages().  This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty.  If offline_pages() fails, we account back
vmemmap pages.  If it succeeds, we call mhp_deinit_memmap_on_memory().

Hot-remove:

 We need to be careful when removing memory, as adding and
 removing memory needs to be done with the same granularity.
 To check that this assumption is not violated, we check the
 memory range we want to remove and if a) any memory block has
 vmemmap pages and b) the range spans more than a single memory
 block, we scream out loud and refuse to proceed.

 If all is good and the range was using memmap on memory (aka vmemmap pages),
 we construct an altmap structure so free_hugepage_table does the right
 thing and calls vmem_altmap_free instead of free_pagetable.

Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Oscar Salvador <[email protected]>
Reviewed-by: David Hildenbrand <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Anshuman Khandual <[email protected]>
Cc: Pavel Tatashin <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
  • Loading branch information
osalvadorvilardaga authored and torvalds committed May 5, 2021
1 parent f990114 commit a08a2ae
Show file tree
Hide file tree
Showing 8 changed files with 250 additions and 22 deletions.
72 changes: 66 additions & 6 deletions drivers/base/memory.c
Original file line number Diff line number Diff line change
Expand Up @@ -173,16 +173,73 @@ static int memory_block_online(struct memory_block *mem)
{
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
struct zone *zone;
int ret;

zone = zone_for_pfn_range(mem->online_type, mem->nid, start_pfn, nr_pages);

/*
* Although vmemmap pages have a different lifecycle than the pages
* they describe (they remain until the memory is unplugged), doing
* their initialization and accounting at memory onlining/offlining
* stage helps to keep accounting easier to follow - e.g vmemmaps
* belong to the same zone as the memory they backed.
*/
if (nr_vmemmap_pages) {
ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
if (ret)
return ret;
}

ret = online_pages(start_pfn + nr_vmemmap_pages,
nr_pages - nr_vmemmap_pages, zone);
if (ret) {
if (nr_vmemmap_pages)
mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
return ret;
}

/*
* Account once onlining succeeded. If the zone was unpopulated, it is
* now already properly populated.
*/
if (nr_vmemmap_pages)
adjust_present_page_count(zone, nr_vmemmap_pages);

return online_pages(start_pfn, nr_pages, mem->online_type, mem->nid);
return ret;
}

static int memory_block_offline(struct memory_block *mem)
{
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
struct zone *zone;
int ret;

zone = page_zone(pfn_to_page(start_pfn));

/*
* Unaccount before offlining, such that unpopulated zone and kthreads
* can properly be torn down in offline_pages().
*/
if (nr_vmemmap_pages)
adjust_present_page_count(zone, -nr_vmemmap_pages);

return offline_pages(start_pfn, nr_pages);
ret = offline_pages(start_pfn + nr_vmemmap_pages,
nr_pages - nr_vmemmap_pages);
if (ret) {
/* offline_pages() failed. Account back. */
if (nr_vmemmap_pages)
adjust_present_page_count(zone, nr_vmemmap_pages);
return ret;
}

if (nr_vmemmap_pages)
mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);

return ret;
}

/*
Expand Down Expand Up @@ -576,7 +633,8 @@ int register_memory(struct memory_block *memory)
return ret;
}

static int init_memory_block(unsigned long block_id, unsigned long state)
static int init_memory_block(unsigned long block_id, unsigned long state,
unsigned long nr_vmemmap_pages)
{
struct memory_block *mem;
int ret = 0;
Expand All @@ -593,6 +651,7 @@ static int init_memory_block(unsigned long block_id, unsigned long state)
mem->start_section_nr = block_id * sections_per_block;
mem->state = state;
mem->nid = NUMA_NO_NODE;
mem->nr_vmemmap_pages = nr_vmemmap_pages;

ret = register_memory(mem);

Expand All @@ -612,7 +671,7 @@ static int add_memory_block(unsigned long base_section_nr)
if (section_count == 0)
return 0;
return init_memory_block(memory_block_id(base_section_nr),
MEM_ONLINE);
MEM_ONLINE, 0);
}

static void unregister_memory(struct memory_block *memory)
Expand All @@ -634,7 +693,8 @@ static void unregister_memory(struct memory_block *memory)
*
* Called under device_hotplug_lock.
*/
int create_memory_block_devices(unsigned long start, unsigned long size)
int create_memory_block_devices(unsigned long start, unsigned long size,
unsigned long vmemmap_pages)
{
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
Expand All @@ -647,7 +707,7 @@ int create_memory_block_devices(unsigned long start, unsigned long size)
return -EINVAL;

for (block_id = start_block_id; block_id != end_block_id; block_id++) {
ret = init_memory_block(block_id, MEM_OFFLINE);
ret = init_memory_block(block_id, MEM_OFFLINE, vmemmap_pages);
if (ret)
break;
}
Expand Down
8 changes: 7 additions & 1 deletion include/linux/memory.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,11 @@ struct memory_block {
int online_type; /* for passing data to online routine */
int nid; /* NID for this memory block */
struct device dev;
/*
* Number of vmemmap pages. These pages
* lay at the beginning of the memory block.
*/
unsigned long nr_vmemmap_pages;
};

int arch_get_memory_phys_device(unsigned long start_pfn);
Expand Down Expand Up @@ -80,7 +85,8 @@ static inline int memory_notify(unsigned long val, void *v)
#else
extern int register_memory_notifier(struct notifier_block *nb);
extern void unregister_memory_notifier(struct notifier_block *nb);
int create_memory_block_devices(unsigned long start, unsigned long size);
int create_memory_block_devices(unsigned long start, unsigned long size,
unsigned long vmemmap_pages);
void remove_memory_block_devices(unsigned long start, unsigned long size);
extern void memory_dev_init(void);
extern int memory_notify(unsigned long val, void *v);
Expand Down
15 changes: 14 additions & 1 deletion include/linux/memory_hotplug.h
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,14 @@ typedef int __bitwise mhp_t;
*/
#define MHP_MERGE_RESOURCE ((__force mhp_t)BIT(0))

/*
* We want memmap (struct page array) to be self contained.
* To do so, we will use the beginning of the hot-added range to build
* the page tables for the memmap array that describes the entire range.
* Only selected architectures support it with SPARSE_VMEMMAP.
*/
#define MHP_MEMMAP_ON_MEMORY ((__force mhp_t)BIT(1))

/*
* Extended parameters for memory hotplug:
* altmap: alternative allocator for memmap array (optional)
Expand Down Expand Up @@ -99,9 +107,13 @@ static inline void zone_seqlock_init(struct zone *zone)
extern int zone_grow_free_lists(struct zone *zone, unsigned long new_nr_pages);
extern int zone_grow_waitqueues(struct zone *zone, unsigned long nr_pages);
extern int add_one_highpage(struct page *page, int pfn, int bad_ppro);
extern void adjust_present_page_count(struct zone *zone, long nr_pages);
/* VM interface that may be used by firmware interface */
extern int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
struct zone *zone);
extern void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages);
extern int online_pages(unsigned long pfn, unsigned long nr_pages,
int online_type, int nid);
struct zone *zone);
extern struct zone *test_pages_in_a_zone(unsigned long start_pfn,
unsigned long end_pfn);
extern void __offline_isolated_pages(unsigned long start_pfn,
Expand Down Expand Up @@ -359,6 +371,7 @@ extern struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_
extern int arch_create_linear_mapping(int nid, u64 start, u64 size,
struct mhp_params *params);
void arch_remove_linear_mapping(u64 start, u64 size);
extern bool mhp_supports_memmap_on_memory(unsigned long size);
#endif /* CONFIG_MEMORY_HOTPLUG */

#endif /* __LINUX_MEMORY_HOTPLUG_H */
2 changes: 1 addition & 1 deletion include/linux/memremap.h
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ struct device;
* @alloc: track pages consumed, private to vmemmap_populate()
*/
struct vmem_altmap {
const unsigned long base_pfn;
unsigned long base_pfn;
const unsigned long end_pfn;
const unsigned long reserve;
unsigned long free;
Expand Down
7 changes: 5 additions & 2 deletions include/linux/mmzone.h
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,11 @@ enum zone_type {
* situations where ZERO_PAGE(0) which is allocated differently
* on different platforms may end up in a movable zone. ZERO_PAGE(0)
* cannot be migrated.
* 7. Memory-hotplug: when using memmap_on_memory and onlining the
* memory to the MOVABLE zone, the vmemmap pages are also placed in
* such zone. Such pages cannot be really moved around as they are
* self-stored in the range, but they are treated as movable when
* the range they describe is about to be offlined.
*
* In general, no unmovable allocations that degrade memory offlining
* should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
Expand Down Expand Up @@ -1392,10 +1397,8 @@ static inline int online_section_nr(unsigned long nr)

#ifdef CONFIG_MEMORY_HOTPLUG
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
#ifdef CONFIG_MEMORY_HOTREMOVE
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
#endif
#endif

static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
Expand Down
5 changes: 5 additions & 0 deletions mm/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,11 @@ config MEMORY_HOTREMOVE
depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
depends on MIGRATION

config MHP_MEMMAP_ON_MEMORY
def_bool y
depends on MEMORY_HOTPLUG && SPARSEMEM_VMEMMAP
depends on ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE

# Heavily threaded applications may benefit from splitting the mm-wide
# page_table_lock, so that faults on different parts of the user address
# space can be handled with less contention: split it at this NR_CPUS.
Expand Down
Loading

0 comments on commit a08a2ae

Please sign in to comment.