This module simplifies creation of data classes (PEP 557) from dictionaries.
To install dacite, simply use pip
(or pipenv
):
$ pip install dacite
Minimum Python version supported by dacite
is 3.6.
from dataclasses import dataclass
from dacite import from_dict
@dataclass
class User:
name: str
age: int
is_active: bool
data = {
'name': 'john',
'age': 30,
'is_active': True,
}
user = from_dict(data_class=User, data=data)
assert user == User(name='john', age=30, is_active=True)
Dacite supports following features:
- nested structures
- (basic) types checking
- optional fields (i.e.
typing.Optional
) - unions
- forward references
- collections
- values casting and transformation
- remapping of fields names
Passing plain dictionaries as a data container between your functions or methods isn't a good practice. Of course you can always create your custom class instead, but this solution is an overkill if you only want to merge a few fields within a single object.
Fortunately Python has a good solution to this problem - data classes.
Thanks to @dataclass
decorator you can easily create a new custom
type with a list of given fields in a declarative manner. Data classes
support type hints by design.
However, even if you are using data classes, you have to create their
instances somehow. In many such cases, your input is a dictionary - it
can be a payload from a HTTP request or a raw data from a database. If
you want to convert those dictionaries into data classes, dacite
is
your best friend.
This library was originally created to simplify creation of type hinted data transfer objects (DTO) which can cross the boundaries in the application architecture.
Dacite is based on a single function - dacite.from_dict
. This function
takes 3 parameters:
data_class
- data class typedata
- dictionary of input dataconfig
(optional) - configuration of the creation process, instance ofdacite.Config
class
Configuration is a (data) class with following fields:
remap
flattened
prefixed
cast
transform
forward references
The examples below show all features of from_dict
function and usage
of all Config
parameters.
Use a dot-notation path if you want to point a nested data class field in
a configuration, e.g. "a.b"
. It works for all options.
You can pass a data with nested dictionaries and it will create a proper result.
@dataclass
class A:
x: str
y: int
@dataclass
class B:
a: A
data = {
'a': {
'x': 'test',
'y': 1,
}
}
result = from_dict(data_class=B, data=data)
assert result == B(a=A(x='test', y=1))
Whenever your data class has a Optional
field and you will not provide
input data for this field, it will take the None
value.
from typing import Optional
@dataclass
class A:
x: str
y: Optional[int]
data = {
'x': 'test',
}
result = from_dict(data_class=A, data=data)
assert result == A(x='test', y=None)
If your field can accept multiple types, you should use Union
. Dacite
will try to match data with provided types one by one. If none will
match, it will raise UnionMatchError
exception.
from typing import Union
@dataclass
class A:
x: str
@dataclass
class B:
y: int
@dataclass
class C:
u: Union[A, B]
data = {
'u': {
'y': 1,
},
}
result = from_dict(data_class=C, data=data)
assert result == C(u=B(y=1))
Dacite supports fields defined as collections. It works for both - basic types and data classes.
@dataclass
class A:
x: str
y: int
@dataclass
class B:
a_list: List[A]
data = {
'a_list': [
{
'x': 'test1',
'y': 1,
},
{
'x': 'test2',
'y': 2,
}
],
}
result = from_dict(data_class=B, data=data)
assert result == B(a_list=[A(x='test1', y=1), A(x='test2', y=2)])
Definition of forward references can be passed as a {'name': Type}
mapping to
Config.forward_references
. This dict is passed to typing.get_type_hints()
as the
globalns
param when evaluating each field's type.
@dataclass
class X:
y: "Y"
@dataclass
class Y:
s: str
data = from_dict(X, {"y": {"s": "text"}}, Config(forward_references={"Y": Y}))
assert data == X(Y("text"))
If your input data key does not match with a data class field name, you
can use Config.remap
argument to handle this case. You have to pass
dictionary with a following mapping:
{'data_class_field': 'input_field'}
@dataclass
class A:
x: str
data = {
'y': 'test',
}
result = from_dict(data_class=A, data=data, config=Config(remap={'x': 'y'}))
assert result == A(x='test')
You often receive a flat structure which you want to convert to
something more sophisticated. In this case you can use
Config.flattened
argument. You have to pass list of flattened fields.
@dataclass
class A:
x: str
y: int
@dataclass
class B:
a: A
z: float
data = {
'x': 'test',
'y': 1,
'z': 2.0,
}
result = from_dict(data_class=B, data=data, config=Config(flattened=['a']))
assert result == B(a=A(x='test', y=1), z=2.0)
Sometimes your data is prefixed rather than nested. To handle this case,
you have to use Config.prefixed
argument, just pass a following
mapping: {'data_class_field': 'prefix'}
@dataclass
class A:
x: str
y: int
@dataclass
class B:
a: A
z: float
data = {
'a_x': 'test',
'a_y': 1,
'z': 2.0,
}
result = from_dict(data_class=B, data=data, config=Config(prefixed={'a': 'a_'}))
assert result == B(a=A(x='test', y=1), z=2.0)
Input values are not casted by default. If you want to use field type
information to transform input value from one type to another, you have
to pass given field name as an element of the Config.cast
argument
list.
@dataclass
class A:
x: str
data = {
'x': 1,
}
result = from_dict(data_class=A, data=data, config=Config(cast=['x']))
assert result == A(x='1')
You can use Config.transform
argument if you want to transform the
input data into the new value. You have to pass a following mapping:
{'data_class_field': callable}
, where callable
is a
Callable[[Any], Any]
.
@dataclass
class A:
x: str
data = {
'x': 'TEST',
}
result = from_dict(data_class=A, data=data, config=Config(transform={'x': str.lower}))
assert result == A(x='test')
Whenever something goes wrong, from_dict
will raise adequate
exception. There are a few of them:
WrongTypeError
- raised when a type of a input value does not match with a type of a data class fieldMissingValueError
- raised when you don't provide a value for a required fieldInvalidConfigurationError
- raised when you provide a invalid value (a field name or a input data key) for a configurationUnionMatchError
- raised when provided data does not match any type ofUnion
ForwardReferenceError
- raised when undefined forward reference encountered in dataclass
Created by Konrad Hałas.