A small library for computing exponential moving averages of model parameters.
This library was originally written for personal use. Nevertheless, if you run into issues or have suggestions for improvement, feel free to open either a new issue or pull request.
For the stable version from PyPI:
pip install torch-ema
For the latest GitHub version:
pip install -U git+https://github.com/fadel/pytorch_ema
import torch
import torch.nn.functional as F
from torch_ema import ExponentialMovingAverage
torch.manual_seed(0)
x_train = torch.rand((100, 10))
y_train = torch.rand(100).round().long()
x_val = torch.rand((100, 10))
y_val = torch.rand(100).round().long()
model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
ema = ExponentialMovingAverage(model.parameters(), decay=0.995)
# Train for a few epochs
model.train()
for _ in range(20):
logits = model(x_train)
loss = F.cross_entropy(logits, y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Update the moving average with the new parameters from the last optimizer step
ema.update()
# Validation: original
model.eval()
logits = model(x_val)
loss = F.cross_entropy(logits, y_val)
print(loss.item())
# Validation: with EMA
# the .average_parameters() context manager
# (1) saves original parameters before replacing with EMA version
# (2) copies EMA parameters to model
# (3) after exiting the `with`, restore original parameters to resume training later
with ema.average_parameters():
logits = model(x_val)
loss = F.cross_entropy(logits, y_val)
print(loss.item())
While the average_parameters()
context manager is convinient, you can also manually execute the same series of operations:
ema.store()
ema.copy_to()
# ...
ema.restore()
By default the methods of ExponentialMovingAverage
act on the model parameters the object was constructed with, but any compatable iterable of parameters can be passed to any method (such as store()
, copy_to()
, update()
, restore()
, and average_parameters()
):
model = torch.nn.Linear(10, 2)
model2 = torch.nn.Linear(10, 2)
ema = ExponentialMovingAverage(model.parameters(), decay=0.995)
# train
# calling `ema.update()` will use `model.parameters()`
ema.copy_to(model2)
# model2 now contains the averaged weights
Like a PyTorch optimizer, ExponentialMovingAverage
objects have state_dict()
/load_state_dict()
methods to allow pausing, serializing, and restarting training without loosing shadow parameters, stored parameters, or the update count.
ExponentialMovingAverage
objects have a .to()
function (like torch.Tensor
) that can move the object's internal state to a different device or floating-point dtype.
For more details on individual methods, please check the docstrings.