forked from DIG-Kaust/MLgeoscience
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
20 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,23 +1,23 @@ | ||
# Schedule | ||
|
||
| Lecture | Topic | Exercise | | ||
|---------|------------------------------------------------------------------------------------------|----------| | ||
| 1 | [Course overview and introduction to Machine Learning](lectures/01_intro.md) | - | | ||
| 2 | [Linear algebra refresher](lectures/02_linalg.md) | - | | ||
| 3 | [Probability refresher](lectures/02_prob.md) | - | | ||
| 4 | [Gradient-based optimization](lectures/03_gradopt.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/VisualOptimization/1_VisualOptimization.ipynb) | | ||
| 5 | [Linear and Logistic regression](lectures/04_linreg.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/BasicTorch/2_BasicPytorch.ipynb) | | ||
| 6 | [Neural Networks: perceptron, activation functions](lectures/05_nn.md) | [link1](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/BasicTorch/2_BasicPytorch.ipynb) | | ||
| Lecture | Topic | Exercise | | ||
|---------|-------------------------------------------------------------------------------------------|----------| | ||
| 1 | [Course overview and introduction to Machine Learning](lectures/01_intro.md) | - | | ||
| 2 | [Linear algebra refresher](lectures/02_linalg.md) | - | | ||
| 3 | [Probability refresher](lectures/02_prob.md) | - | | ||
| 4 | [Gradient-based optimization](lectures/03_gradopt.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/VisualOptimization/1_VisualOptimization.ipynb) | | ||
| 5 | [Linear and Logistic regression](lectures/04_linreg.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/BasicTorch/2_BasicPytorch.ipynb) | | ||
| 6 | [Neural Networks: perceptron, activation functions](lectures/05_nn.md) | [link1](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/BasicTorch/2_BasicPytorch.ipynb) | | ||
| 7 | [Neural Networks: backpropagation, initialization, and loss functions](lectures/06_nn.md) | - | | ||
| 8 | [Best practices in training of Machine Learning models](lectures/07_bestpractice.md) | - | | ||
| 9 | [Advanced solvers: momentum, RMSProp, Adam, greedy training](lectures/08_gradopt1.md) | - | | ||
| 10 | [UQ in Neural Networks and Mixture Density Networks](lectures/09_mdn.md) | [link1](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/LearningFunction/LearningFunction.ipynb) [link2](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/MixtureDensityNetwork/MDN.ipynb) | | ||
| 11 | [Introduction to CNNs](lectures/10_cnn.md) | - | | ||
| 12 | [CNNs Popular Architectutues](lectures/11_cnnarch.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/SaltNet/SaltNet.ipynb) | | ||
| 13 | [Sequence modelling: basic principles](lectures/12_seqmod.md) | | | ||
| 14 | [Sequence modelling: architectures](lectures/12_seqmod.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/EventDetection/EventDetection.ipynb) | | ||
| 15 | [Dimensionality reduction](lectures/13_dimred.md) | | | ||
| 16 | [Generative modelling and VAEs reduction](lectures/14_vae.md) | | | ||
| 17 | [GANs](lectures/15_gans.md) | | | ||
| 17 | [Scientific ML and PINNs](lectures/16_pinns.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/EikonalPINN/EikonalPINN_constant.ipynb) | | ||
| 17 | [Deep learning for Inverse Problems](lectures/1y_deepinv.md) | | | ||
| 8 | [Best practices in training of Machine Learning models](lectures/07_bestpractice.md) | - | | ||
| 9 | [Advanced solvers: momentum, RMSProp, Adam, greedy training](lectures/08_gradopt1.md) | - | | ||
| 10 | [UQ in Neural Networks and Mixture Density Networks](lectures/09_mdn.md) | [link1](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/LearningFunction/LearningFunction.ipynb) [link2](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/MixtureDensityNetwork/MDN.ipynb) | | ||
| 11 | [Introduction to CNNs](lectures/10_cnn.md) | - | | ||
| 12 | [CNNs Popular Architectutues](lectures/11_cnnarch.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/SaltNet/SaltNet.ipynb) | | ||
| 13 | [Sequence modelling: basic principles](lectures/12_seqmod.md) | | | ||
| 14 | [Sequence modelling: architectures](lectures/12_seqmod.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/EventDetection/EventDetection.ipynb) | | ||
| 15 | [Dimensionality reduction](lectures/13_dimred.md) | | | ||
| 16 | [Generative modelling and VAEs reduction](lectures/14_vae.md) | | | ||
| 17 | [GANs](lectures/15_gans.md) | | | ||
| 17 | [Scientific ML and PINNs](lectures/16_pinns.md) | [link](https://github.com/DIG-Kaust/MLgeoscience/blob/main/labs/notebooks/EikonalPINN/EikonalPINN_constant.ipynb) | | ||
| 17 | [Deep learning for Inverse Problems](lectures/17_deepinv.md) | | |