Skip to content

Commit

Permalink
Code to run distributed MultitaskClassifier
Browse files Browse the repository at this point in the history
This code is the example for how to run Deepchem MultitaskClassifier in distributed mode for distributed training and linear speed up.
  • Loading branch information
saurabhclusterone authored Dec 12, 2018
1 parent 872859a commit a544c4e
Showing 1 changed file with 80 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import deepchem as dc
import tensorflow as tf
import numpy as np
import os
import json
import time


def input_fn(dataset, epochs):
x, y, weights = dataset.make_iterator(batch_size=100, epochs=epochs).get_next()
return {'x': x, 'weights': weights}, y

def mean_auc(labels, predictions, weights):
metric_ops = []
update_ops = []
for i in range(n_tasks):
metric, update = tf.metrics.auc(labels[:,i], predictions[:,i], weights[:,i])
metric_ops.append(metric)
update_ops.append(update)

mean_metric = tf.reduce_mean(tf.stack(metric_ops))
update_all = tf.group(*update_ops)
return mean_metric, update_all

def run():
os.environ['GRPC_POLL_STRATEGY'] = 'poll'
tf.logging.set_verbosity(tf.logging.DEBUG)
try:
task_type = os.environ['JOB_NAME']
task_index = int(os.environ['TASK_INDEX'])
ps_hosts = os.environ['PS_HOSTS'].split(',')
worker_hosts = os.environ['WORKER_HOSTS'].split(',')
TF_CONFIG = {
'task': {'type': task_type, 'index': task_index},
'cluster': {
'chief': [worker_hosts[0]],
'worker': worker_hosts,
'ps': ps_hosts
},
'environment': 'cloud'
}

local_ip = 'localhost:' + TF_CONFIG['cluster'][task_type][task_index].split(':')[1]
TF_CONFIG['cluster'][task_type][task_index] = local_ip
if (task_type in ('chief', 'master')) or (task_type == 'worker' and task_index == 0):
TF_CONFIG['cluster']['worker'][task_index] = local_ip
TF_CONFIG['task']['type'] = 'chief'

os.environ['TF_CONFIG'] = json.dumps(TF_CONFIG)
except KeyError as ex:
print(ex)
job_name = None
task_index = 0
ps_hosts = None
worker_hosts = None

tasks, datasets, transformers = dc.molnet.load_tox21()
train_dataset, valid_dataset, test_dataset = datasets
n_tasks = len(tasks)
n_features = train_dataset.X.shape[1]

model = dc.models.MultitaskClassifier(n_tasks, n_features, layer_sizes=[1000], dropout=0.25)

print "featurizing columns"
x_col = tf.feature_column.numeric_column('x', shape=(n_features,))
weight_col = tf.feature_column.numeric_column('weights', shape=(n_tasks,))

print "entering estimator"
estimator = model.make_estimator(feature_columns=[x_col], weight_column=weight_col, metrics={'mean_auc': mean_auc},
model_dir='/logs')

# following lines added to run train_and_evaluate function of deepchem which is compatible for distributed training
train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(train_dataset, 100), max_steps=100000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(test_dataset, 1), steps=None, start_delay_secs=0,
throttle_secs=30)

tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

if __name__ == "__main__":
run()

0 comments on commit a544c4e

Please sign in to comment.