forked from deepchem/deepchem
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Code to run distributed MultitaskClassifier
This code is the example for how to run Deepchem MultitaskClassifier in distributed mode for distributed training and linear speed up.
- Loading branch information
1 parent
872859a
commit a544c4e
Showing
1 changed file
with
80 additions
and
0 deletions.
There are no files selected for viewing
80 changes: 80 additions & 0 deletions
80
contrib/tensorflow_models/deepchem_multitask_classifer_distributed_training_example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import deepchem as dc | ||
import tensorflow as tf | ||
import numpy as np | ||
import os | ||
import json | ||
import time | ||
|
||
|
||
def input_fn(dataset, epochs): | ||
x, y, weights = dataset.make_iterator(batch_size=100, epochs=epochs).get_next() | ||
return {'x': x, 'weights': weights}, y | ||
|
||
def mean_auc(labels, predictions, weights): | ||
metric_ops = [] | ||
update_ops = [] | ||
for i in range(n_tasks): | ||
metric, update = tf.metrics.auc(labels[:,i], predictions[:,i], weights[:,i]) | ||
metric_ops.append(metric) | ||
update_ops.append(update) | ||
|
||
mean_metric = tf.reduce_mean(tf.stack(metric_ops)) | ||
update_all = tf.group(*update_ops) | ||
return mean_metric, update_all | ||
|
||
def run(): | ||
os.environ['GRPC_POLL_STRATEGY'] = 'poll' | ||
tf.logging.set_verbosity(tf.logging.DEBUG) | ||
try: | ||
task_type = os.environ['JOB_NAME'] | ||
task_index = int(os.environ['TASK_INDEX']) | ||
ps_hosts = os.environ['PS_HOSTS'].split(',') | ||
worker_hosts = os.environ['WORKER_HOSTS'].split(',') | ||
TF_CONFIG = { | ||
'task': {'type': task_type, 'index': task_index}, | ||
'cluster': { | ||
'chief': [worker_hosts[0]], | ||
'worker': worker_hosts, | ||
'ps': ps_hosts | ||
}, | ||
'environment': 'cloud' | ||
} | ||
|
||
local_ip = 'localhost:' + TF_CONFIG['cluster'][task_type][task_index].split(':')[1] | ||
TF_CONFIG['cluster'][task_type][task_index] = local_ip | ||
if (task_type in ('chief', 'master')) or (task_type == 'worker' and task_index == 0): | ||
TF_CONFIG['cluster']['worker'][task_index] = local_ip | ||
TF_CONFIG['task']['type'] = 'chief' | ||
|
||
os.environ['TF_CONFIG'] = json.dumps(TF_CONFIG) | ||
except KeyError as ex: | ||
print(ex) | ||
job_name = None | ||
task_index = 0 | ||
ps_hosts = None | ||
worker_hosts = None | ||
|
||
tasks, datasets, transformers = dc.molnet.load_tox21() | ||
train_dataset, valid_dataset, test_dataset = datasets | ||
n_tasks = len(tasks) | ||
n_features = train_dataset.X.shape[1] | ||
|
||
model = dc.models.MultitaskClassifier(n_tasks, n_features, layer_sizes=[1000], dropout=0.25) | ||
|
||
print "featurizing columns" | ||
x_col = tf.feature_column.numeric_column('x', shape=(n_features,)) | ||
weight_col = tf.feature_column.numeric_column('weights', shape=(n_tasks,)) | ||
|
||
print "entering estimator" | ||
estimator = model.make_estimator(feature_columns=[x_col], weight_column=weight_col, metrics={'mean_auc': mean_auc}, | ||
model_dir='/logs') | ||
|
||
# following lines added to run train_and_evaluate function of deepchem which is compatible for distributed training | ||
train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(train_dataset, 100), max_steps=100000) | ||
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(test_dataset, 1), steps=None, start_delay_secs=0, | ||
throttle_secs=30) | ||
|
||
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) | ||
|
||
if __name__ == "__main__": | ||
run() |