forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ONNX] Stable Diffusion exporter and pipeline (huggingface#399)
* initial export and design * update imports * custom prover, import fixes * Update src/diffusers/onnx_utils.py Co-authored-by: Patrick von Platen <[email protected]> * Update src/diffusers/onnx_utils.py Co-authored-by: Patrick von Platen <[email protected]> * remove push_to_hub * Update src/diffusers/onnx_utils.py Co-authored-by: Suraj Patil <[email protected]> * remove torch_device * numpify the rest of the pipeline * torchify the safety checker * revert tensor * Code review suggestions + quality * fix tests * fix provider, add an end-to-end test * style Co-authored-by: Patrick von Platen <[email protected]> Co-authored-by: Suraj Patil <[email protected]>
- Loading branch information
1 parent
7bcc873
commit 8d9c4a5
Showing
13 changed files
with
657 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
# Copyright 2022 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
from pathlib import Path | ||
|
||
import torch | ||
from torch.onnx import export | ||
|
||
from diffusers import StableDiffusionOnnxPipeline, StableDiffusionPipeline | ||
from diffusers.onnx_utils import OnnxRuntimeModel | ||
from packaging import version | ||
|
||
|
||
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | ||
|
||
|
||
def onnx_export( | ||
model, | ||
model_args: tuple, | ||
output_path: Path, | ||
ordered_input_names, | ||
output_names, | ||
dynamic_axes, | ||
opset, | ||
use_external_data_format=False, | ||
): | ||
output_path.parent.mkdir(parents=True, exist_ok=True) | ||
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | ||
# so we check the torch version for backwards compatibility | ||
if is_torch_less_than_1_11: | ||
export( | ||
model, | ||
model_args, | ||
f=output_path.as_posix(), | ||
input_names=ordered_input_names, | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
do_constant_folding=True, | ||
use_external_data_format=use_external_data_format, | ||
enable_onnx_checker=True, | ||
opset_version=opset, | ||
) | ||
else: | ||
export( | ||
model, | ||
model_args, | ||
f=output_path.as_posix(), | ||
input_names=ordered_input_names, | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
do_constant_folding=True, | ||
opset_version=opset, | ||
) | ||
|
||
|
||
@torch.no_grad() | ||
def convert_models(model_path: str, output_path: str, opset: int): | ||
pipeline = StableDiffusionPipeline.from_pretrained(model_path, use_auth_token=True) | ||
output_path = Path(output_path) | ||
|
||
# TEXT ENCODER | ||
text_input = pipeline.tokenizer( | ||
"A sample prompt", | ||
padding="max_length", | ||
max_length=pipeline.tokenizer.model_max_length, | ||
truncation=True, | ||
return_tensors="pt", | ||
) | ||
onnx_export( | ||
pipeline.text_encoder, | ||
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | ||
model_args=(text_input.input_ids.to(torch.int32)), | ||
output_path=output_path / "text_encoder" / "model.onnx", | ||
ordered_input_names=["input_ids"], | ||
output_names=["last_hidden_state", "pooler_output"], | ||
dynamic_axes={ | ||
"input_ids": {0: "batch", 1: "sequence"}, | ||
}, | ||
opset=opset, | ||
) | ||
|
||
# UNET | ||
onnx_export( | ||
pipeline.unet, | ||
model_args=(torch.randn(2, 4, 64, 64), torch.LongTensor([0, 1]), torch.randn(2, 77, 768), False), | ||
output_path=output_path / "unet" / "model.onnx", | ||
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"], | ||
output_names=["out_sample"], # has to be different from "sample" for correct tracing | ||
dynamic_axes={ | ||
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
"timestep": {0: "batch"}, | ||
"encoder_hidden_states": {0: "batch", 1: "sequence"}, | ||
}, | ||
opset=opset, | ||
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split | ||
) | ||
|
||
# VAE ENCODER | ||
vae_encoder = pipeline.vae | ||
# need to get the raw tensor output (sample) from the encoder | ||
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() | ||
onnx_export( | ||
vae_encoder, | ||
model_args=(torch.randn(1, 3, 512, 512), False), | ||
output_path=output_path / "vae_encoder" / "model.onnx", | ||
ordered_input_names=["sample", "return_dict"], | ||
output_names=["latent_sample"], | ||
dynamic_axes={ | ||
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
}, | ||
opset=opset, | ||
) | ||
|
||
# VAE DECODER | ||
vae_decoder = pipeline.vae | ||
# forward only through the decoder part | ||
vae_decoder.forward = vae_encoder.decode | ||
onnx_export( | ||
vae_decoder, | ||
model_args=(torch.randn(1, 4, 64, 64), False), | ||
output_path=output_path / "vae_decoder" / "model.onnx", | ||
ordered_input_names=["latent_sample", "return_dict"], | ||
output_names=["sample"], | ||
dynamic_axes={ | ||
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
}, | ||
opset=opset, | ||
) | ||
|
||
# SAFETY CHECKER | ||
safety_checker = pipeline.safety_checker | ||
safety_checker.forward = safety_checker.forward_onnx | ||
onnx_export( | ||
pipeline.safety_checker, | ||
model_args=(torch.randn(1, 3, 224, 224), torch.randn(1, 512, 512, 3)), | ||
output_path=output_path / "safety_checker" / "model.onnx", | ||
ordered_input_names=["clip_input", "images"], | ||
output_names=["out_images", "has_nsfw_concepts"], | ||
dynamic_axes={ | ||
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
"images": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
}, | ||
opset=opset, | ||
) | ||
|
||
onnx_pipeline = StableDiffusionOnnxPipeline( | ||
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), | ||
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), | ||
tokenizer=pipeline.tokenizer, | ||
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"), | ||
scheduler=pipeline.scheduler, | ||
safety_checker=OnnxRuntimeModel.from_pretrained(output_path / "safety_checker"), | ||
feature_extractor=pipeline.feature_extractor, | ||
) | ||
|
||
onnx_pipeline.save_pretrained(output_path) | ||
print("ONNX pipeline saved to", output_path) | ||
|
||
_ = StableDiffusionOnnxPipeline.from_pretrained(output_path, provider="CPUExecutionProvider") | ||
print("ONNX pipeline is loadable") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--model_path", | ||
type=str, | ||
required=True, | ||
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | ||
) | ||
|
||
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | ||
|
||
parser.add_argument( | ||
"--opset", | ||
default=14, | ||
type=str, | ||
help="The version of the ONNX operator set to use.", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
convert_models(args.model_path, args.output_path, args.opset) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.