Skip to content

Commit

Permalink
add 线性回归、逻辑回归、交叉熵、反向传播和softmax等推导
Browse files Browse the repository at this point in the history
  • Loading branch information
Mikoto10032 committed Nov 5, 2019
1 parent f61a417 commit f494c24
Showing 1 changed file with 4 additions and 0 deletions.
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -354,6 +354,10 @@
* [23.谱归一化(Spectral Normalization)的理解](https://blog.csdn.net/StreamRock/article/details/83590347)[常见向量范数和矩阵范数](https://blog.csdn.net/left_la/article/details/9159949)[谱范数正则(Spectral Norm Regularization)的理解](https://blog.csdn.net/StreamRock/article/details/83539937)
* [24.L1正则化与L2正则化](https://zhuanlan.zhihu.com/p/35356992)
* [25.为什么选用交叉熵而不是MSE](https://zhuanlan.zhihu.com/p/61944055)
* [机器学习笔记四:线性回归回顾与logistic回归](https://blog.csdn.net/xierhacker/article/details/53316138)
* [反向传播算法(过程及公式推导)](https://blog.csdn.net/u014313009/article/details/51039334)
* [交叉熵代价函数(作用及公式推导)](https://blog.csdn.net/u014313009/article/details/51043064)
* **Softmax**[详解softmax函数以及相关求导过程](https://zhuanlan.zhihu.com/p/25723112) && [softmax的log似然代价函数(公式求导)](https://blog.csdn.net/u014313009/article/details/51045303)

## 四. 炼丹术士那些事

Expand Down

0 comments on commit f494c24

Please sign in to comment.