forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Tests] Adds a test suite for
EMAModel
(huggingface#2530)
* ema test cases. * debugging maessages. * debugging maessages. * add: tests for ema. * fix: optimization_step arg, * handle device placement. * Apply suggestions from code review Co-authored-by: Will Berman <[email protected]> * remove del and gc. * address PR feedback. * add: tests for serialization. * fix: typos. * skip_mps to serialization. --------- Co-authored-by: Will Berman <[email protected]> Co-authored-by: Patrick von Platen <[email protected]>
- Loading branch information
1 parent
d9b8adc
commit f9cfb5a
Showing
1 changed file
with
157 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import tempfile | ||
import unittest | ||
|
||
import torch | ||
|
||
from diffusers import UNet2DConditionModel | ||
from diffusers.training_utils import EMAModel | ||
from diffusers.utils.testing_utils import skip_mps, torch_device | ||
|
||
|
||
class EMAModelTests(unittest.TestCase): | ||
model_id = "hf-internal-testing/tiny-stable-diffusion-pipe" | ||
batch_size = 1 | ||
prompt_length = 77 | ||
text_encoder_hidden_dim = 32 | ||
num_in_channels = 4 | ||
latent_height = latent_width = 64 | ||
generator = torch.manual_seed(0) | ||
|
||
def get_models(self, decay=0.9999): | ||
unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet", device=torch_device) | ||
ema_unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet") | ||
ema_unet = EMAModel( | ||
ema_unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=ema_unet.config | ||
) | ||
return unet, ema_unet | ||
|
||
def get_dummy_inputs(self): | ||
noisy_latents = torch.randn( | ||
self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator | ||
).to(torch_device) | ||
timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device) | ||
encoder_hidden_states = torch.randn( | ||
self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator | ||
).to(torch_device) | ||
return noisy_latents, timesteps, encoder_hidden_states | ||
|
||
def simulate_backprop(self, unet): | ||
updated_state_dict = {} | ||
for k, param in unet.state_dict().items(): | ||
updated_param = torch.randn_like(param) + (param * torch.randn_like(param)) | ||
updated_state_dict.update({k: updated_param}) | ||
unet.load_state_dict(updated_state_dict) | ||
return unet | ||
|
||
def test_optimization_steps_updated(self): | ||
unet, ema_unet = self.get_models() | ||
# Take the first (hypothetical) EMA step. | ||
ema_unet.step(unet.parameters()) | ||
assert ema_unet.optimization_step == 1 | ||
|
||
# Take two more. | ||
for _ in range(2): | ||
ema_unet.step(unet.parameters()) | ||
assert ema_unet.optimization_step == 3 | ||
|
||
def test_shadow_params_not_updated(self): | ||
unet, ema_unet = self.get_models() | ||
# Since the `unet` is not being updated (i.e., backprop'd) | ||
# there won't be any difference between the `params` of `unet` | ||
# and `ema_unet` even if we call `ema_unet.step(unet.parameters())`. | ||
ema_unet.step(unet.parameters()) | ||
orig_params = list(unet.parameters()) | ||
for s_param, param in zip(ema_unet.shadow_params, orig_params): | ||
assert torch.allclose(s_param, param) | ||
|
||
# The above holds true even if we call `ema.step()` multiple times since | ||
# `unet` params are still not being updated. | ||
for _ in range(4): | ||
ema_unet.step(unet.parameters()) | ||
for s_param, param in zip(ema_unet.shadow_params, orig_params): | ||
assert torch.allclose(s_param, param) | ||
|
||
def test_shadow_params_updated(self): | ||
unet, ema_unet = self.get_models() | ||
# Here we simulate the parameter updates for `unet`. Since there might | ||
# be some parameters which are initialized to zero we take extra care to | ||
# initialize their values to something non-zero before the multiplication. | ||
unet_pseudo_updated_step_one = self.simulate_backprop(unet) | ||
|
||
# Take the EMA step. | ||
ema_unet.step(unet_pseudo_updated_step_one.parameters()) | ||
|
||
# Now the EMA'd parameters won't be equal to the original model parameters. | ||
orig_params = list(unet_pseudo_updated_step_one.parameters()) | ||
for s_param, param in zip(ema_unet.shadow_params, orig_params): | ||
assert ~torch.allclose(s_param, param) | ||
|
||
# Ensure this is the case when we take multiple EMA steps. | ||
for _ in range(4): | ||
ema_unet.step(unet.parameters()) | ||
for s_param, param in zip(ema_unet.shadow_params, orig_params): | ||
assert ~torch.allclose(s_param, param) | ||
|
||
def test_consecutive_shadow_params_updated(self): | ||
# If we call EMA step after a backpropagation consecutively for two times, | ||
# the shadow params from those two steps should be different. | ||
unet, ema_unet = self.get_models() | ||
|
||
# First backprop + EMA | ||
unet_step_one = self.simulate_backprop(unet) | ||
ema_unet.step(unet_step_one.parameters()) | ||
step_one_shadow_params = ema_unet.shadow_params | ||
|
||
# Second backprop + EMA | ||
unet_step_two = self.simulate_backprop(unet_step_one) | ||
ema_unet.step(unet_step_two.parameters()) | ||
step_two_shadow_params = ema_unet.shadow_params | ||
|
||
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): | ||
assert ~torch.allclose(step_one, step_two) | ||
|
||
def test_zero_decay(self): | ||
# If there's no decay even if there are backprops, EMA steps | ||
# won't take any effect i.e., the shadow params would remain the | ||
# same. | ||
unet, ema_unet = self.get_models(decay=0.0) | ||
unet_step_one = self.simulate_backprop(unet) | ||
ema_unet.step(unet_step_one.parameters()) | ||
step_one_shadow_params = ema_unet.shadow_params | ||
|
||
unet_step_two = self.simulate_backprop(unet_step_one) | ||
ema_unet.step(unet_step_two.parameters()) | ||
step_two_shadow_params = ema_unet.shadow_params | ||
|
||
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): | ||
assert torch.allclose(step_one, step_two) | ||
|
||
@skip_mps | ||
def test_serialization(self): | ||
unet, ema_unet = self.get_models() | ||
noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs() | ||
|
||
with tempfile.TemporaryDirectory() as tmpdir: | ||
ema_unet.save_pretrained(tmpdir) | ||
loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel) | ||
|
||
# Since no EMA step has been performed the outputs should match. | ||
output = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
|
||
assert torch.allclose(output, output_loaded) |