Skip to content

Commit

Permalink
Renames 'Flockers' to 'Flockers' for consistency.
Browse files Browse the repository at this point in the history
  • Loading branch information
jackiekazil committed Mar 2, 2018
1 parent c169a67 commit aede417
Show file tree
Hide file tree
Showing 8 changed files with 450 additions and 0 deletions.
113 changes: 113 additions & 0 deletions examples/flockers/Flocker Test.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from flockers.model import BoidModel\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def draw_boids(model):\n",
" x_vals = []\n",
" y_vals = []\n",
" for boid in model.schedule.agents:\n",
" x, y = boid.pos\n",
" x_vals.append(x)\n",
" y_vals.append(y)\n",
" fig = plt.figure(figsize=(10,10))\n",
" ax = fig.add_subplot(111)\n",
" ax.scatter(x_vals, y_vals)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"model = BoidModel(100, 100, 100, speed=5, vision=5, separation=1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"for i in range(50):\n",
" model.step()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAJPCAYAAACpXgqFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3W+snNd9H/jvT1LMUnEVmQwg+Y9iB22MxEbqVt1N04Kt\nuGtLVI3WirCA0wAu1LTJInAXN1rSrSUnqPUi68ZuyPVqF4bRJnaJoPZWTaPYKdwV2TRMs9ggzsZx\n7Ur22img1rIhuiHtMHEU1TbPvpih7tXVveS9d+bcZ56ZzwcYaJ5n5rlz9PDOne+c8zvnqdZaAADo\n57qhGwAAsOwELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOdhS4quoDVXW+qj69Yd8/qqrPVNW/r6pf\nrKpv2/DYg1X1+ar6bFXd1aPhAABjsdMerg8muXvTvjNJXttae12SzyV5MEmq6jVJfjDJa6bHvK+q\n9KQBACtrR0GotfbrSb6yad/Z1trl6eZvJnnF9P49ST7cWvt6a+3JJL+b5Pvm01wAgPGZV8/T307y\nsen9lyV5asNjTyV5+ZxeBwBgdGYOXFX1E0n+a2vtQ1d5musHAQAr64ZZDq6qv5XkjUlev2H3F5Pc\ntmH7FdN9m48VwgCA0Wit1V6P3XPgqqq7k/y9JHe01v54w0MfTfKhqjqVyVDidyX5+FY/Y5aGr7qq\neqi19tDQ7Rgr5282zt/eOXezcf5m4/zt3awdRTsKXFX14SR3JPn2qvpCkndmMivxRUnOVlWS/EZr\n7a2ttSeq6pEkTyT5RpK3ttb0ZgEAK2tHgau19kNb7P7AVZ7/riTv2mujAACWifWxxuvc0A0YuXND\nN2Dkzg3dgBE7N3QDRu7c0A0YuXNDN2BV1VCjfVXV1HABAGMwa27RwwUA0JnABQDQmcAFANCZwAUA\n0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZ\nwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAF\nANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQ\nmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnA\nBQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA\n0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANDZjgJXVX2gqs5X1ac37DtU\nVWer6nNVdaaqbt7w2INV9fmq+mxV3dWj4QAAY7HTHq4PJrl7074Hkpxtrb06ya9Mt1NVr0nyg0le\nMz3mfVWlJw0AWFk7CkKttV9P8pVNu9+U5PT0/ukkPzC9f0+SD7fWvt5aezLJ7yb5vtmbCgAwTrP0\nPN3SWjs/vX8+yS3T+y9L8tSG5z2V5OUzvA4AwKjNZaivtdaStKs9ZR6vAwAwRjfMcOz5qrq1tfZ0\nVb00yZen+7+Y5LYNz3vFdN8LVNVDGzbPtdbOzdAedqiqjiWHTky2Lp5srT02bIsAYLFU1dEkR+f2\n8yadUzt64Vcl+eXW2vdOt9+T5EJr7d1V9UCSm1trD0yL5j+USd3Wy5P8myR/um16oapqrbWa1/8I\nOzMJWzc9mjx8cLJn7XLyzU8mX3uH4AUAW5s1t+yoh6uqPpzkjiTfXlVfSPIPkvx0kkeq6u8keTLJ\nm5OktfZEVT2S5Ikk30jy1s1hiyEdOpGcOpjcd2XHdcn7b08+9ZGqlzyeXHdBrxcAzNeOAldr7Ye2\neegN2zz/XUnetddGsd+uT3LjgeRnbp9srx2pqnuFLgCYj1lquBiliyeTtSNJpkOKb0/y3Ul+Jht6\nvQ4mx08kEbgAYA4sSLpiJr1Wl+5N7v9Ecv/l5C1Jnh26WQCw1HZcND/3F1Y0P7j12YrPHk6uf23y\n8IHJI2vPJJcMKQLA1Ky5ReAiiaUiAObJ39TlI3CxLW94gP23xfI7Rg2WwL4sC8H4rL/hT115w5t5\nCLAvXrD8jolICFzLyxseABaFwAUAc7V5+Z21Z5JLJwdtEoNTw7WkJkOKN34k+TPTmYefejb5o3sM\nKQL0p4Z2+ajh4ipuSPJj0/trQzYEYKVMA5aQxXMEriXy/G9UNx9O3ntgQw3XATVcADAMgWtJvHBW\n4v2Xh20RAHCFwLU0Ns9K/PR1ydrlPHf5JkWbADAUgWtpfW+Sb34yOX5hsn1J0SYADMQsxSWx15WN\nJ8fd/K7kulcmz/6n5GvvmDxidg0AXOHSPjxnt9OQpyHtI+sXrX5bkj/4enLgsgtZA8A6y0LwnN1P\nQz50Ijm1cSZjkp/8luSnYoV6AJif64ZuAADAstPDtdIunkzW/kqSTUOKa5fX95ndCACzUsO1gjbV\nep1Lbv4fFM0DwPYUzbMre53NCACrbNbcooZrhKrqWNXhM5NbHdvd0YdOTMLWfZncHj643psFAPSg\nhmtkXngJn7UjVbWLHqrLh/u1DgDYisA1Opsv4bPzZRsmYe3G106K469Ye1ZRPAD0JXCtlCvrbt2a\n5B8n+VKSbz6ufgsA+hK4RufiyWTtSJKNRe+77KE6Nr2dzvq1FgGAXsxSHKHdXsLn+ceZoQgAu2VZ\nCHZlr2ENAFaZwAUA0Jl1uAAAFpzAtQJmWygVAJiVIcUlp1AeAGY3a26xLMTS2/tCqQDAfBhSBADo\nTA/X0pvHQqkAwCzUcK0Aa28BwGyswwUA0Jl1uAAAFpzABQDQmcAFANCZwAUA0JnABQDQmcAFANCZ\nwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAF\nANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0JnABQDQ\nmcAFANCZwAUA0JnABQDQmcAFANCZwAUA0NnMgauqHqyqx6vq01X1oao6UFWHqupsVX2uqs5U1c3z\naCwAzENVHas6fGZyq2NDt4flV621vR9c9aok/zbJ97TWnq2qf57kY0lem+T3Wmvvqaq3J3lJa+2B\nTce21lrt+cUBWGmToHToxGTr4snW2mM7P+6mR5OHD072rD2TXLp3p8ezmmbNLTfM+PqXknw9yY1V\n9c0kNyb5UpIHk9wxfc7pJOeSPLDVDwCA3VoPTaeuhKYjVbXD0HToxOS4+67sOJgcP5FE4KKbmYYU\nW2sXk5xM8p8zCVpfba2dTXJLa+389Gnnk9wyUysB4HkOnZj0UN2Xye3hg+u9XbB4Zurhqqo/leT+\nJK9K8vtJ/kVVvWXjc1prraq2HLesqoc2bJ5rrZ2bpT0AcG0XTyZrR5JsHFI8OWiTWDhVdTTJ0bn9\nvBlruH4wyZ2ttR+Zbv/NJN+f5L9P8t+11p6uqpcm+dXW2ndvOlYNFwB7Mmsd1l7rv1hds+aWWQPX\n65L8syT/bZI/TvJPk3w8ySuTXGitvbuqHkhys6J5AOZJaGI/DRq4pg34+5kMoF9O8okkP5LkTyZ5\nJMl3JHkyyZtba1/ddJzABQCMwuCBa88vLHABACMxa26x0jwAQGcCFwBAZwIXAEBnAhcAQGcCFwBA\nZwIXAEBnAhcAQGcCFwBAZwIXAEBnAhcAQGcCFwBAZwIXAEBnAhcAQGcCFwBAZwIXAEBnAhcAQGcC\nFwBAZwIXQEdVdazq8JnJrY4N3R5gGNVaG+aFq1prrQZ5cYB9MAlYNz2aPHxwsmftmeTSva21x4Zt\nGbBbs+aWG+bZGAA2OnQiOXUwue/KjoPJ8RNJBC5YMYYUAQA608MF0M3Fk8nakSQbhxRPDtokYBBq\nuAA6mtRxHTox2bp4Uv0WjNOsuUXgYlR8eAEwBIGLlWHGFwBDMUuRFWLGFwDjZJYiAEBnergYETO+\nABgnNVyMiqJ5AIagaB4AoLNZc4saLgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQu\nAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELpZCVR2rOnxmcqtjQ7cHADaq1towLzzjVbfhiknAuunR\n5OGDkz1rzySX7m2tPTZsywBYFrPmlhvm2RgYxqETyamDyX1XdhxMjp9IInABsBAMKbJkHkvy/iS5\nfTdDi4YkAejJkCKjtz6k+KMHk9NJfmb6yM6GFg1JAnAts+YWgYulMAlNh/5Zcurw+tDi6STHz7Z2\n4a6rH3v4THLqzt0eB8DqmDW3GFJkKUx7oz4xdDsAYCuK5lkiF08ma0eSbBwaPNnvOADYGUOKLJXp\n0OKJydbFkzutw9rrcQCsBjVcAACdqeECAFhwAhejYJ0sAMbMkCILzzpZAAzNpX1YAS7dA8C4GVIE\nAOhMDxcjYJ0sAMZNDRejYJ0sAIZkHS4AgM6swwUAsOAELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDO\nBC72jQtQA7CqrMPFvnABagDGzMWrGQkXoAZgdRlSBKA7JQWsupmHFKvq5iQ/m+S1SVqSH07y+ST/\nPMkrkzyZ5M2tta9uOs6Q4goxpAiry/ufZTD4tRSr6nSSX2utfaCqbkjyrUl+IsnvtdbeU1VvT/KS\n1toD82w44+MC1LCaqg6fSU7duV5ScDrJ8bOtXbhr8ri/DSy+QWu4qurbkvzl1tp9SdJa+0aS36+q\nNyW5Y/q000nOJXlgyx/Cypj+EfWHFHjOeu/XqSu9X0eqSu8XS2fWovnvTPJfquqDSV6X5LeT3J/k\nltba+elzzie5ZcbXAWC0Lp5M1o4k2TikeHJyf+8TavSMMSazBq4bktye5H9qrf1WVb03m3qyWmut\nqoZZewKAwbXWHquqe6dBKsmlmcORnjHGZtbA9VSSp1prvzXd/oUkDyZ5uqpuba09XVUvTfLlrQ6u\nqoc2bJ5rrZ2bsT0ALKDtSwqu1vt1NZaaoa+qOprk6Lx+3kyBaxqovlBVr26tfS7JG5I8Pr3dl+Td\n0//+0jbHPzTL6wMwbj16v2Aepp1A565sV9U7Z/l585il+LpMloV4UZL/mMmyENcneSTJd8SyEADM\nmaUm2G+DLwux5xcWuACYgaJ59pPABQDQ2ay5xaV9AAA6E7gAADoTuAAAOhO4AAA6E7gA6KKqjlUd\nPjO51bGh2wNDMksRgLmzThbLZtbcMuulfQBgCy69AxsZUmRQhhwAWAWGFBmMIQdYXt7fLBsrzTNa\nVYfPJKfuXB9yOJ3k+NnWLtw1ZLuA+XDpHZaJGi4AFtI0YAlZEIGLQV08mawdSbJxyOHkoE0CgA4M\nKTIoQw4AjIEaLgCAzmbNLZaFAFgBlmCBYenhAlhylmiA2enhAhiRYXqaDp2YhK37Mrk9fHC9dhLY\nD2YpAuyT9Z6mU1d6mo5UlZ4mWAECF8C+Ger6gpZggaEJXABLrrX2WFXdOw13SS5ZggX2maJ5gH2i\neB3GyzpcACNisd/F5d+GqxG4AJiJoKH3kWtz8WoA9szMySuGmtDAqrAOF0BWeSV2a3TBftDDBayU\nrYbP9PJg6Qx6U8MFrIzt6nSmw0l3rg8nnU5y/GxrF+4aqq37ZVFrl4aoK1PLxtWo4QLYsW3rdFbW\nIq7RNVSP4/TnC1l0IXABDDictAi9KosXNBSws3wELmCFbB2shurlUTsGq0MNF7BSFqFHab0th8+s\nau3Y1SxqXRmrTQ0XwC4s3vAZmy1iXRnMSg/Xklmkb+/A1d+TenJgPFzah+f44w2LZSfvSV+SnAPG\nQeDiOepBYLF4T16bL4qMhRouAEbMEhCsBoFrqbg0BctvXMNP3pPAhCHFJTOuDyPYnTEOP3lPXt0Y\n/01ZTWq4gJWhJmo5CaWMgRouAEbN2misAoELGBE1UcA4GVIERsXwEzAENVwAAJ3Nmluum2djAGZR\nVceqDp+Z3OrY0O0BmBc9XMBCsDwAsMjMUgSWhBXHgeVlSBEAoDNDisAgNs82nPzXkCKwmMxSBEZn\nu3qtyX1LPgCLRw0XMEJb12tNL9EjZAFLRw0XAEBneriAAbhED7Ba1HABg3CJHmBMFM0DAHTm0j4A\nAAtO4AIA6EzgAgDoTOACAOhM4GIwVXWs6vCZya2ODd0eAOjFLEUGsd2lXSwNAMAicmkfRmrrS7vE\nZV0AWEKGFAEAOtPDxUBc2mWVWFUeWHVquBiMD+HVoF4PWAYu7QMstKrDZ5JTd67X651Ocvxsaxfu\nGrJdALvh0j4AAAtODRfQmXo9AEOKQHfq9WDvvH8WgxouAFhSJp0sDgufAsDSskj0sphL0XxVXV9V\nv1NVvzzdPlRVZ6vqc1V1pqpunsfrAACM0bxmKf54kieSXBmffCDJ2dbaq5P8ynQbANiViycnw4in\nM7mtPTPZx9jMXMNVVa9I8k+T/C9JjrfW/npVfTbJHa2181V1a5JzrbXv3nScGi5YMIpzYfF4Xy6G\nwYvmq+pfJHlXkpuSvG0auL7SWnvJ9PFKcvHK9objBC5YIIpzAbY36MKnVfXXkny5tfY7SbZsRJsk\numGmQgK7cOjEJGzdl8nt4YPr36oBmMWssxT/UpI3VdUbk/yJJDdV1c8nOV9Vt7bWnq6qlyb58lYH\nV9VDGzbPtdbOzdgeYM+ePZy8P8lHk/yPQzcGYFBVdTTJ0bn9vHmtw1VVd2R9SPE9SS601t5dVQ8k\nubm19sCm5xtShAUxHU78SPLwgcmetyX5o2eTP7rHkCLA4q3DdSW9/XSSR6rq7yR5Msmb5/w6MEqL\nVPz6/LbcfDh574ENa/0kuf/x1r4mbAHMwdwCV2vt15L82vT+xSRvmNfPhmWwXpR+6kpR+pGqGqQo\n/YVtuf/yC5913YX9bRWsnkX6EkZfVpqHfbNIK0Zvbsunr0vWLue5iTQuMA29LdKXMPoTuIAk35vk\nm59Mjk97tS75pg3dLdKXMHoTuGDfXDyZrB1JsnGdqx31Is1/2GGrtnztHa39oT/0AB3MbZbirl/Y\nLEVW0F6CU68FSdWOwLAsNjwug680v+cXFrhgR6oOn0lO3bk+7HA6yfGzrV24a8h2AbPzxWc8Fm1Z\nCABgh6YBS8haAQIXDGhn3273XvsFwGIwpAgD2U39hmEHgGGp4YKRWoTaLEEOYGdmzS3XzbMxwHhs\nWHTxzsntpkcn+2C1VdWxqsNnJjfvCeZDDRcM5uq1Wf17nyy6CJtN3nc3fiR59fRC7p/6K1XlIu7M\nTOCCgbTWHquqe6chJxtXd3fJDxjKt74rOXgg+bHp9tsOJPWu+CLCjAQu2GfP77nKya1rtvaj98ns\nR3ihA69MfiYb3ntJjr9yqNawPAQu2EeL1HN1tR42WF2X/1OSw1vsg5mYpQj7aOuZifd/orWv/Pnn\nP29xL/lhZiPLbPre+0jy8LSGa+3Z5NI9k/t+71eZleZh/P5sVR3b+Ad8qN6na4WpReqhgx6m7717\nNr73Jv/1e89s9HDBPpoGlo8lD0+XZHl7krck+eAg10bcFLDOJTf95NV61RZh7TDYb37vSfRwwahM\nvj2/+JPJ+29PXpbJH+6nB2nLFr1Vr09+9DrLRLCKDJXTm8AF++5r70ieeDT5sYOTsDXU7MAXzIS8\nLnn/NY4xs5Hlc+2hcr/3zE7ggn222LMDP3s5OT0d7nzhh8pitx326urLsPi9Zx4ELhjA9I/1wH+w\nt/zW/lPJ8aOT7a0/VBaj7bC//N4zK0XzsMLUrcBiL8PC4pg1twhcsE+EG1hc3p9ci8AFI+AbNMC4\nWRYCRmE/ro0IwKK6bugGAAAsOz1csC+s4wOwytRwwT5RlAswXormAQA6mzW3qOECAOhM4AIA6Ezg\nAgDoTOACAOhM4AIA6EzgAgDoTOACAOhM4AIA6EzgAnatqo5VHT4zudWxvT4HYFVYaR7YlUl4uunR\n5OGN14W8d+OlinbyHIAxmTW3uHg1sEuHTiSnDib3XdlxMDl+Islju3sOwOowpAgA0JkeLmCXLp5M\n1o4k2ThceHL3zwFYHWq4gF2b1GgdOjHZunhyq9qsnTwHYCxmzS0CFwDANcyaW9RwAQB0JnABAHQm\ncAEAdCZwAQB0JnABAHQmcAEAdCZwAQB0JnABAHQmcAEAdCZwAQB0JnABAHQmcAEAdCZwAQB0JnAB\nAHQmcAEAdCZwAQB0JnABAHQmcAEAdCZwAQB0JnABAHQmcAEAdCZwAQB0JnABAHQmcAEAdCZwAQB0\nJnABAHQmcAEAdDZT4Kqq26rqV6vq8ar6D1W1Nt1/qKrOVtXnqupMVd08n+YCAIxPtdb2fnDVrUlu\nba19sqpenOS3k/xAkh9O8nuttfdU1duTvKS19sCmY1trrWZoOwDAvpg1t8zUw9Vae7q19snp/T9M\n8pkkL0/ypiSnp087nUkIAwBYSXOr4aqqVyX5c0l+M8ktrbXz04fOJ7llXq8DADA2N8zjh0yHE/9l\nkh9vrf1B1XqPW2utVdWW45ZV9dCGzXOttXPzaA8AwCyq6miSo3P7ebPUcCVJVX1Lkn+V5F+31t47\n3ffZJEdba09X1UuT/Gpr7bs3HaeGC1ZMVR1LDp2YbF082Vp7bNgWAezMoDVcNenK+rkkT1wJW1Mf\nTXLf9P59SX5pltcBxm8Stm56NDl15+R206OTfQDLb9ZZikeS/Lskn0py5Qc9mOTjSR5J8h1Jnkzy\n5tbaVzcdq4cLVkjV4TOToHXlu9jpJMfPtnbhriHbBbATs+aWmWq4Wmv/d7bvJXvDLD8bAGBZzKVo\nHuDaLp5M1o4kOTjZXnsmuXRyrz9NPRgwJjMXze/5hQ0pwsqZV0harwd7eGN4u1foAnqZNbcIXMDo\nbF0Pdv8nWvvKnx+yXcDyGnSWIsAC+bNmPQKLSg8XMDrTIcWPJQ9PvzS+PclbknzQrEegi0FnKQIM\nobX2WNWLP5m8//bkZZkMKT49dLMAtmVIERipr70jeeKZ5E2ZhK21ZyYzIQEWjyFFYLQsDQHsF7MU\nAQA6M0sRWFpVdazq8JnJzQxEYLz0cAGDuNZwoMVNgUViliJLQz3O6lgPU6euhKkjVbUpTB06MXn8\nyuKmOZgcP5HE7wUwOgIXC2FnH8Asj52EqcuHB2gYQBcCFwtCbwbrJgH8xtcmb9uwd+3ZWS52DTAk\ngQsYwMWTydqRJBvrszaEqUMnklMHkluT/OMkX0ryzcf1eAJjJXCxIK71AcwymawUX/dOezGTXNqm\nZu/Y9HY6yfEL+9hEgLkyS5GFoWieK8xQBBaNhU+BpSSAA4tE4AIA6MxK8wAAC07gAgDoTOACAOhM\n4KIrFx8GAEXzdGRqPwDLwsWrWWAu1wMAiSFF9shQIQDsnCFFdm2nQ4WGFAFYFhY+Zd9VHT6TnLpz\nfajwdJLjZ1u7cNcLn2u1cADGTw0XC20asK4ZsgQzAJaZHi52bd5DhYYeV4+ADYyNIUUGMc8PzN0M\nUTJ+AjYwRoYUGcROhwoTvRlsZrkQYPUIXMzFdqFqvTfj1JXejCNVtak34+LJZO1Iko09Hif3sfkA\n0JUhRXZlq2B1tSGinQ4X6gVbHYYUgTEypMi+2a63ah5DRLsZomTcpiH93unvSJJLAjaw9AQunnPt\nXqZtg9VVGC7khQRsYNUIXCTZaa3VdrYPVcvSm2HIE4BZqOEiyc6WZrh6rdbyBhI1RwCo4WLfXK23\narmHiCxjAMBsBC6mdlZrtdzBCgD6MKTIc5Z5WHAWhhQBcGkf2AfCKMBqE7joStAAAIGLjgylAcCE\nWYp0ZHYeAMzDdUM3gHGqqmNVh89MbnVs6PYAwCIzpMi2thtSnNw31AjA6lDDRVdbFc3vZFV6AFgm\nari4qllnGVroFABmp4drifWaZTj9uR9JHj4w/bnPJpfuMaQIy8nyMKCHi6vqOcvwG0nev+E+sIzW\nv7iduvLF7UhVqdmEXTJLkT04dCJ534HkNzK5ve/A+rdfYLkcOjHpJb8vk9vDB73fYff0cC21nV2Q\nGgDoSw3XkttJ7cVu6zOsQA+rw/sdJiwLwUz2+sdUES2sDu93ELiYkTW1AODaZs0tiuYBADpTNL/y\nFNYDQG+GFFGfAQDXoIYLAPaJL6irS+ACgH1giYzVpmgeYIVV1bGqw2eqXvLbVS/+7cn9OjZ0u5bT\n/q+6v/7v69917BTNA4zUC69z+LZMgsA/cb3DOXn+EOLlw/v/2q5juSwELoDResEF6pN8NJOel3ld\nqH7/LFp91AsDz1ufTdaeTXJgst17VvcL/n1H+e/KhMAFsIIWP9wsQm/OCwLPgeTvfiI5fmGyeWnw\n88Z4CFwAo7V5Hb0rQ4pX73kZSbhZ0N6cAxf270oc1klcJgLXyG31LXXRvrkCfUzf7/dOgsnlw8nX\nk3zwwrV7XsYSboY2bOB5/r9vokdt3ASuEdvmW+pPJTf95GJ9cwXmYasvU9P39hK8vxevN2cRAs/y\n/PtiHa4R2+bC0xeSU4ddjBqWyzzXgFrU9aT0zrPIZs0tergARmF+w4CL0HOzFb05LLNugauq7k7y\n3iTXJ/nZ1tq7e73W6tqyC/5UsvaTuUq3vG+RgHAD+6vLkGJVXZ/k/0vyhiRfTPJbSX6otfaZDc8x\npDgHuy2aX9ShBODqvHdhWAt5LcWq+otJ3tlau3u6/UCStNZ+esNzBK4BbFP3pcaLlTS23t6xtReW\nyaLWcL08yRc2bD+V5C90ei2AXVvMtaiuzjAgjFevwDXM1Ed2YPGmXsMwrEUF7J9egeuLSW7bsH1b\nJr1cz1NVD23YPNdaO9epPUwt6uwkAFgkVXU0ydG5/bxONVw3ZFI0//okX0ry8SiaBxaIInRgNxay\naD5JquqvZn1ZiJ9rrf3DTY8LXMCgFKEDO7WwgeuaLyxwAQAjMWtuuW6ejQEA4IUELgCAzgQuAIDO\nBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQu\nAIDOBC6KPY5xAAAGrUlEQVQAgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQu\nAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCA\nzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4E\nLgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4A\ngM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDOBC4AgM4ELgCAzgQuAIDO\nBC4AgM4ELgCAzvYcuKrqH1XVZ6rq31fVL1bVt2147MGq+nxVfbaq7ppPUwEAxmmWHq4zSV7bWntd\nks8leTBJquo1SX4wyWuS3J3kfVWlJ23Oquro0G0YM+dvNs7f3jl3s3H+ZuP8DWfPQai1dra1dnm6\n+ZtJXjG9f0+SD7fWvt5aezLJ7yb5vplayVaODt2AkTs6dANG7ujQDRixo0M3YOSODt2AkTs6dANW\n1bx6nv52ko9N778syVMbHnsqycvn9DoAAKNzw9UerKqzSW7d4qF3tNZ+efqcn0jyX1trH7rKj2p7\nbyIAwLhVa3vPQlX1t5L8aJLXt9b+eLrvgSRprf30dPv/SvLO1tpvbjpWCAMARqO1Vns9ds+Bq6ru\nTnIyyR2ttd/bsP81ST6USd3Wy5P8myR/us2S7AAARuyqQ4rX8L8neVGSs1WVJL/RWntra+2Jqnok\nyRNJvpHkrcIWALDKZhpSBADg2vZ9fSwLps6uqu6enqPPV9Xbh27PIquq26rqV6vq8ar6D1W1Nt1/\nqKrOVtXnqupMVd08dFsXWVVdX1W/U1VXJss4fztUVTdX1S9M/+49UVV/wfnbmelnwuNV9emq+lBV\nHXDutldVH6iq81X16Q37tj1fPnOfb5vzN7fMMsSCpBZMnUFVXZ/k/8jkHL0myQ9V1fcM26qF9vUk\n/3Nr7bVJvj/J352erweSnG2tvTrJr0y32d6PZ1ImcKVL3Pnbuf8tycdaa9+T5M8k+Wycv2uqqldl\nMinr9tba9ya5PsnfiHN3NR/M5LNhoy3Pl8/cLW11/uaWWfb95FowdWbfl+R3W2tPtta+nuT/zOTc\nsYXW2tOttU9O7/9hks9kMpnjTUlOT592OskPDNPCxVdVr0jyxiQ/m+TKDB3nbwem34b/cmvtA0nS\nWvtGa+334/ztxKVMvjDdWFU3JLkxyZfi3G2rtfbrSb6yafd258tn7iZbnb95Zpah06wFU3fv5Um+\nsGHbedqh6TfmP5fJm+aW1tr56UPnk9wyULPG4H9N8veSXN6wz/nbme9M8l+q6oNV9Ymq+idV9a1x\n/q6ptXYxk5nw/zmToPXV1trZOHe7td358pm7ezNlli6Bazpe/Oktbn99w3MsmLo3zskeVNWLk/zL\nJD/eWvuDjY9NZ9E6r1uoqr+W5Muttd/Jeu/W8zh/V3VDktuTvK+1dnuSr2XTEJjzt7Wq+lNJ7k/y\nqkw+3F5cVW/Z+Bznbnd2cL6cy23MI7PMsizE9q/Y2p1Xe3y6YOobk7x+w+4vJrltw/Yrpvt4vs3n\n6bY8P2WzSVV9SyZh6+dba7803X2+qm5trT1dVS9N8uXhWrjQ/lKSN1XVG5P8iSQ3VdXPx/nbqaeS\nPNVa+63p9i9kUgPytPN3Tf9Nkv+ntXYhSarqF5P8xTh3u7Xde9Vn7g7NK7MMMUvx7kyGJ+65sjr9\n1EeT/I2qelFVfWeS70ry8f1u3wj8v0m+q6peVVUvyqRo76MDt2lhVVUl+bkkT7TW3rvhoY8muW96\n/74kv7T5WJLW2jtaa7e11r4zk4Llf9ta+5tx/naktfZ0ki9U1aunu96Q5PEkvxzn71o+m+T7q+rg\n9H38hkwmbjh3u7Pde9Vn7g7MM7Ps+zpcVfX5TBZMvTjd9RuttbdOH3tHJmOk38hk6OexfW3cSFTV\nX03y3kxm7fxca+0fDtykhVVVR5L8uySfynp374OZvDEeSfIdSZ5M8ubW2leHaONYVNUdSU601t5U\nVYfi/O1IVb0ukwkHL0ryH5P8cCbvXefvGqrq72cSEi4n+USSH0nyJ+PcbamqPpzkjiTfnkm91j9I\n8pFsc7585j7fFufvnZl8Xswls1j4FACgs6FnKQIALD2BCwCgM4ELAKAzgQsAoDOBCwCgM4ELAKAz\ngQsAoDOBCwCgs/8fICoqGcqtXKgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x108938a58>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"draw_boids(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
34 changes: 34 additions & 0 deletions examples/flockers/Readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Flockers

An implementation of Craig Reynolds's Boids flocker model. Agents (simulated birds) try to fly towards the average position of their neighbors and in the same direction as them, while maintaining a minimum distance. This produces flocking behavior.

This model tests Mesa's continuous space feature, and uses numpy arrays to represent vectors. It also demonstrates how to create custom visualization components.

## How to Run

Launch the model:
```
$ python Flocker_Server.py
```

Then open your browser to [http://127.0.0.1:8521/](http://127.0.0.1:8521/) and press Reset, then Run.

## Files

* [flockers/model.py](flockers/model.py): Core model file; contains the BoidModel class.
* [flockers/boid.py](flockers/boid.py): The Boid agent class.
* [flockers/SimpleContinuousModule.py](flockers/SimpleContinuousModule.py): Defines ``SimpleCanvas``, the Python side of a custom visualization module for drawing agents with continuous positions.
* [flockers/simple_continuous_canvas.js](flockers/simple_continuous_canvas.js): JavaScript side of the ``SimpleCanvas`` visualization module; takes the output genereated by the Python ``SimpleCanvas`` element and draws it in the browser window via HTML5 canvas.
* [flockers/server.py](flockers/server.py): Sets up the visualization; uses the SimpleCanvas element defined above
* [run.py](run.py) Launches the visualization.
* [Flocker Test.ipynb](Flocker Test.ipynb): Tests the model in a Jupyter notebook.

## Further Reading

=======
* Launch the visualization
```
$ python run.py
```
* Visit your browser: http://127.0.0.1:8521/
* In your browser hit *run*
33 changes: 33 additions & 0 deletions examples/flockers/flockers/SimpleContinuousModule.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
from mesa.visualization.ModularVisualization import VisualizationElement


class SimpleCanvas(VisualizationElement):
local_includes = ["flockers/simple_continuous_canvas.js"]
portrayal_method = None
canvas_height = 500
canvas_width = 500

def __init__(self, portrayal_method, canvas_height=500, canvas_width=500):
'''
Instantiate a new SimpleCanvas
'''
self.portrayal_method = portrayal_method
self.canvas_height = canvas_height
self.canvas_width = canvas_width
new_element = ("new Simple_Continuous_Module({}, {})".
format(self.canvas_width, self.canvas_height))
self.js_code = "elements.push(" + new_element + ");"

def render(self, model):
space_state = []
for obj in model.schedule.agents:
portrayal = self.portrayal_method(obj)
x, y = obj.pos
x = ((x - model.space.x_min) /
(model.space.x_max - model.space.x_min))
y = ((y - model.space.y_min) /
(model.space.y_max - model.space.y_min))
portrayal["x"] = x
portrayal["y"] = y
space_state.append(portrayal)
return space_state
Loading

0 comments on commit aede417

Please sign in to comment.