Skip to content

Summaries of papers on machine learning, computer vision, autonomous robots etc.

Notifications You must be signed in to change notification settings

arshad2101/papers-1

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

081d207 · Oct 11, 2019
 
 
 
 
 
 

Repository files navigation

About

Summaries of papers I have read during my time as a PhD student.

The /commented_pdfs folder contains pdfs with comments, highlights etc. (visible at least in Okular on Ubuntu) for all papers.

Index




All Papers:

Papers Read in 2019:

[19-10-11] [paper62]
[19-10-11] [paper62]
[19-10-04] [paper61]
[19-07-11] [paper60]
  • Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud [pdf] [pdf with comments] [comments]
  • Shaoshuai Shi, Zhe Wang, Xiaogang Wang, Hongsheng Li
  • 2019-07-08
[19-07-10] [paper59]
[19-07-03] [paper58]
[19-06-12] [paper57]
[19-06-12] [paper56]
[19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019
[19-05-29] [paper54]
  • Attention Is All You Need [pdf] [pdf with comments] [comments]
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • 2017-06-12, NeurIPS2017
[19-04-05] [paper53]
  • Stochastic Gradient Descent as Approximate Bayesian Inference [pdf] [pdf with comments] [comments]
  • Stephan Mandt, Matthew D. Hoffman, David M. Blei
  • 2017-04-13, Journal of Machine Learning Research 18 (2017)
[19-03-29] [paper52]
  • Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling [pdf] [pdf with comments] [comments]
  • Jacob Menick, Nal Kalchbrenner
  • 2018-12-04, ICLR2019
[19-03-15] [paper51]
[19-03-11] [paper50]
[19-03-04] [paper49]
[19-03-01] [paper48]
[19-02-27] [paper47]
[19-02-25] [paper46]
  • Evaluating model calibration in classification [pdf] [code] [pdf with comments] [comments]
  • Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, Thomas B. Schön
  • 2019-02-19, AISTATS2019
[19-02-22] [paper45]
  • Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks [pdf] [pdf with comments] [comments]
  • Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruosong Wang
  • 2019-01-24
[19-02-17] [paper44]
[19-02-14] [paper43]
[19-02-13] [paper42]
[19-02-12] [paper41]
[19-02-07] [paper40]
[19-02-06] [paper39]
  • Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks [pdf] [pdf with comments] [comments]
  • José Miguel Hernández-Lobato, Ryan P. Adams
  • 2015-07-15, ICML2015
[19-02-05] [paper38]
[19-01-28] [paper37]
[19-01-27] [paper36]
[19-01-26] [paper35]
  • Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification [pdf] [poster] [pdf with comments] [comments]
  • Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin
  • CVPR2016
[19-01-25] [paper34]
[19-01-25] [paper33]
[19-01-24] [paper32]
  • Tutorial: Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods [pdf] [pdf with comments]
  • Changyou Chen
  • 2016-08-10
[19-01-24] [paper31]
[19-01-23] [paper30]
[19-01-23] [paper29]
[19-01-17] [paper28]
[19-01-09] [paper27]
  • Relaxed Softmax: Efficient Confidence Auto-Calibration for Safe Pedestrian Detection [pdf] [poster] [pdf with comments] [summary]
  • Lukas Neumann, Andrew Zisserman, Andrea Vedaldi
  • 2018-11-29, NeurIPS2018 Workshop

Papers Read in 2018:

[18-12-12] [paper26]
[18-12-06] [paper25]
[18-12-05] [paper24]
[18-11-29] [paper23]
[18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018
[18-11-22] [paper21]
  • When Recurrent Models Don't Need To Be Recurrent (a.k.a. Stable Recurrent Models) [pdf] [pdf with comments] [summary]
  • John Miller, Moritz Hardt
  • 2018-05-29, ICLR2019
[18-11-16] [paper20]
  • Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow [pdf] [pdf with comments] [summary]
  • Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
  • 2018-08-06, ECCV2018
[18-11-15] [paper19]
  • Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) [pdf] [pdf with comments] [summary]
  • Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, Rory Sayres
  • 2018-06-07, ICML2018
[18-11-12] [paper18]
  • Large-Scale Visual Active Learning with Deep Probabilistic Ensembles [pdf] [pdf with comments] [summary]
  • Kashyap Chitta, Jose M. Alvarez, Adam Lesnikowski
  • 2018-11-08
[18-11-08] [paper17]
[18-10-26] [paper16]
  • Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Klaus Dietmayer
  • 2018-09-08, ITSC2018
[18-10-25] [paper15]
  • Bayesian Convolutional Neural Networks with Many Channels are Gaussian Processes [pdf] [pdf with comments] [summary]
  • Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein
  • 2018-10-11, ICLR2019
[18-10-19] [paper14]
  • Uncertainty in Neural Networks: Bayesian Ensembling [pdf] [pdf with comments] [summary]
  • Tim Pearce, Mohamed Zaki, Alexandra Brintrup, Andy Neel
  • 2018-10-12, AISTATS2019 submission
[18-10-18] [paper13]
  • Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles [pdf] [pdf with comments] [summary]
  • Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell
  • 2017-11-17, NeurIPS2017
[18-10-18] [paper12]
  • Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors [pdf] [pdf with comments] [summary]
  • Danijar Hafner, Dustin Tran, Alex Irpan, Timothy Lillicrap, James Davidson
  • 2018-07-24, ICML2018 Workshop
[18-10-05] [paper11]
[18-10-04] [paper10]
[18-10-04] [paper9]
  • On gradient regularizers for MMD GANs [pdf] [pdf with comments] [summary]
  • Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton
  • 2018-05-29, NeurIPS2018
[18-09-30] [paper8]
  • Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh
  • 2018-07-04, ICML2018 Workshop
[18-09-27] [paper7]
  • Conditional Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami
  • 2018-07-04, ICML2018
[18-09-27] [paper6]
[18-09-25] [paper5]
  • Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Isidro Cortes-Ciriano, Andreas Bender
  • 2018-09-24
[18-09-25] [paper4]
  • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer
  • 2018-09-14
[18-09-24] [paper3]
[18-09-24] [paper2]
[18-09-20] [paper1]
  • Gaussian Process Behaviour in Wide Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, Zoubin Ghahramani
  • 2018-08-16, ICLR2018



Uncertainty Estimation:

[19-06-12] [paper56]
[19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019
[19-04-05] [paper53]
  • Stochastic Gradient Descent as Approximate Bayesian Inference [pdf] [pdf with comments] [comments]
  • Stephan Mandt, Matthew D. Hoffman, David M. Blei
  • 2017-04-13, Journal of Machine Learning Research 18 (2017)
[19-02-27] [paper47]
[19-02-25] [paper46]
  • Evaluating model calibration in classification [pdf] [code] [pdf with comments] [comments]
  • Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, Thomas B. Schön
  • 2019-02-19, AISTATS2019
[19-02-14] [paper43]
[19-02-13] [paper42]
[19-02-12] [paper41]
[19-02-07] [paper40]
[19-02-06] [paper39]
  • Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks [pdf] [pdf with comments] [comments]
  • José Miguel Hernández-Lobato, Ryan P. Adams
  • 2015-07-15, ICML2015
[19-02-05] [paper38]
[19-01-28] [paper37]
[19-01-27] [paper36]
[19-01-26] [paper35]
  • Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification [pdf] [poster] [pdf with comments] [comments]
  • Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin
  • CVPR2016
[19-01-25] [paper34]
[19-01-25] [paper33]
[19-01-24] [paper32]
  • Tutorial: Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods [pdf] [pdf with comments]
  • Changyou Chen
  • 2016-08-10
[19-01-23] [paper30]
[19-01-23] [paper29]
[19-01-09] [paper27]
  • Relaxed Softmax: Efficient Confidence Auto-Calibration for Safe Pedestrian Detection [pdf] [poster] [pdf with comments] [summary]
  • Lukas Neumann, Andrew Zisserman, Andrea Vedaldi
  • 2018-11-29, NeurIPS2018 Workshop
[18-12-06] [paper25]
[18-12-05] [paper24]
[18-11-29] [paper23]
[18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018
[18-11-16] [paper20]
  • Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow [pdf] [pdf with comments] [summary]
  • Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
  • 2018-08-06, ECCV2018
[18-11-12] [paper18]
  • Large-Scale Visual Active Learning with Deep Probabilistic Ensembles [pdf] [pdf with comments] [summary]
  • Kashyap Chitta, Jose M. Alvarez, Adam Lesnikowski
  • 2018-11-08
[18-10-26] [paper16]
  • Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Klaus Dietmayer
  • 2018-09-08, ITSC2018
[18-10-19] [paper14]
  • Uncertainty in Neural Networks: Bayesian Ensembling [pdf] [pdf with comments] [summary]
  • Tim Pearce, Mohamed Zaki, Alexandra Brintrup, Andy Neel
  • 2018-10-12, AISTATS2019 submission
[18-10-18] [paper13]
  • Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles [pdf] [pdf with comments] [summary]
  • Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell
  • 2017-11-17, NeurIPS2017
[18-10-18] [paper12]
  • Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors [pdf] [pdf with comments] [summary]
  • Danijar Hafner, Dustin Tran, Alex Irpan, Timothy Lillicrap, James Davidson
  • 2018-07-24, ICML2018 Workshop
[18-09-25] [paper5]
  • Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Isidro Cortes-Ciriano, Andreas Bender
  • 2018-09-24
[18-09-25] [paper4]
  • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer
  • 2018-09-14
[18-09-24] [paper3]
[18-09-24] [paper2]



Theoretical Properties of Deep Learning:

[19-02-22] [paper45]
  • Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks [pdf] [pdf with comments] [comments]
  • Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruosong Wang
  • 2019-01-24
[19-02-17] [paper44]
[19-01-17] [paper28]
[18-11-08] [paper17]
[18-10-25] [paper15]
  • Bayesian Convolutional Neural Networks with Many Channels are Gaussian Processes [pdf] [pdf with comments] [summary]
  • Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein
  • 2018-10-11, ICLR2019
[18-09-20] [paper1]
  • Gaussian Process Behaviour in Wide Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, Zoubin Ghahramani
  • 2018-08-16, ICLR2018



VAEs:

[19-03-11] [paper50]
[19-03-04] [paper49]



Normalizing Flows:

[19-10-11] [paper62]



Autonomous Driving:

[19-07-11] [paper60]
  • Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud [pdf] [pdf with comments] [comments]
  • Shaoshuai Shi, Zhe Wang, Xiaogang Wang, Hongsheng Li
  • 2019-07-08
[19-07-10] [paper59]
[19-07-03] [paper58]
[19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019
[19-01-09] [paper27]
  • Relaxed Softmax: Efficient Confidence Auto-Calibration for Safe Pedestrian Detection [pdf] [poster] [pdf with comments] [summary]
  • Lukas Neumann, Andrew Zisserman, Andrea Vedaldi
  • 2018-11-29, NeurIPS2018 Workshop
[18-12-06] [paper25]
[18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018
[18-11-16] [paper20]
  • Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow [pdf] [pdf with comments] [summary]
  • Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
  • 2018-08-06, ECCV2018
[18-10-26] [paper16]
  • Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Klaus Dietmayer
  • 2018-09-08, ITSC2018
[18-10-05] [paper11]
[18-10-04] [paper10]
[18-09-25] [paper4]
  • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer
  • 2018-09-14
[18-09-24] [paper2]



Medical Imaging:

[18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018



Object Detection:

[19-07-03] [paper58]
[19-06-12] [paper56]



3D Object Detection:

[19-07-11] [paper60]
  • Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud [pdf] [pdf with comments] [comments]
  • Shaoshuai Shi, Zhe Wang, Xiaogang Wang, Hongsheng Li
  • 2019-07-08
[19-07-10] [paper59]
[19-07-03] [paper58]
[19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019
[18-10-26] [paper16]
  • Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Klaus Dietmayer
  • 2018-09-08, ITSC2018
[18-10-05] [paper11]
[18-10-04] [paper10]
[18-09-25] [paper4]
  • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer
  • 2018-09-14



Visual Tracking:

[19-06-12] [paper57]



Sequence Modeling:

[19-10-04] [paper61]
[19-05-29] [paper54]
  • Attention Is All You Need [pdf] [pdf with comments] [comments]
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • 2017-06-12, NeurIPS2017
[19-03-15] [paper51]
[19-01-24] [paper31]
[18-11-22] [paper21]
  • When Recurrent Models Don't Need To Be Recurrent (a.k.a. Stable Recurrent Models) [pdf] [pdf with comments] [summary]
  • John Miller, Moritz Hardt
  • 2018-05-29, ICLR2019



Reinforcement Learning:

[19-02-05] [paper38]



Ensembling:

[19-02-05] [paper38]
[18-11-16] [paper20]
  • Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow [pdf] [pdf with comments] [summary]
  • Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
  • 2018-08-06, ECCV2018
[18-11-12] [paper18]
  • Large-Scale Visual Active Learning with Deep Probabilistic Ensembles [pdf] [pdf with comments] [summary]
  • Kashyap Chitta, Jose M. Alvarez, Adam Lesnikowski
  • 2018-11-08
[18-10-19] [paper14]
  • Uncertainty in Neural Networks: Bayesian Ensembling [pdf] [pdf with comments] [summary]
  • Tim Pearce, Mohamed Zaki, Alexandra Brintrup, Andy Neel
  • 2018-10-12, AISTATS2019 submission
[18-10-18] [paper13]
  • Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles [pdf] [pdf with comments] [summary]
  • Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell
  • 2017-11-17, NeurIPS2017
[18-09-25] [paper5]
  • Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Isidro Cortes-Ciriano, Andreas Bender
  • 2018-09-24



Stochastic Gradient MCMC:

[19-04-05] [paper53]
  • Stochastic Gradient Descent as Approximate Bayesian Inference [pdf] [pdf with comments] [comments]
  • Stephan Mandt, Matthew D. Hoffman, David M. Blei
  • 2017-04-13, Journal of Machine Learning Research 18 (2017)
[19-02-13] [paper42]
[19-01-26] [paper35]
  • Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification [pdf] [poster] [pdf with comments] [comments]
  • Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin
  • CVPR2016
[19-01-25] [paper34]
[19-01-25] [paper33]
[19-01-24] [paper32]
  • Tutorial: Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods [pdf] [pdf with comments]
  • Changyou Chen
  • 2016-08-10
[19-01-23] [paper30]
[19-01-23] [paper29]



Variational Inference:

[19-02-07] [paper40]
[19-01-28] [paper37]
[19-01-27] [paper36]



SysCon Deep Learning Reading Group:

Reading Group Papers in 2019:

[2019 w.41] [19-10-11] [paper62]
[2019 w.40] [19-10-04] [paper61]
[2019 w.23] [19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019
[2019 w.22] [19-05-29] [paper54]
  • Attention Is All You Need [pdf] [pdf with comments] [comments]
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • 2017-06-12, NeurIPS2017
[2019 w.18] [19-02-17] [paper44]
[2019 w.14] [19-04-05] [paper53]
  • Stochastic Gradient Descent as Approximate Bayesian Inference [pdf] [pdf with comments] [comments]
  • Stephan Mandt, Matthew D. Hoffman, David M. Blei
  • 2017-04-13, Journal of Machine Learning Research 18 (2017)
[2019 w.13] [19-03-29] [paper52]
  • Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling [pdf] [pdf with comments] [comments]
  • Jacob Menick, Nal Kalchbrenner
  • 2018-12-04, ICLR2019
[2019 w.12] [19-02-25] [paper46]
  • Evaluating model calibration in classification [pdf] [code] [pdf with comments] [comments]
  • Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, Thomas B. Schön
  • 2019-02-19, AISTATS2019
[2019 w.11] [19-03-15] [paper51]
[2019 w.10] [19-03-04] [paper49]
[2019 w.9] [19-03-01] [paper48]
[2019 w.8] [19-02-22] [paper45]
  • Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks [pdf] [pdf with comments] [comments]
  • Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruosong Wang
  • 2019-01-24
[2019 w.7] [19-02-14] [paper43]
[2019 w.6] [19-02-05] [paper38]
[2019 w.5] [19-01-25] [paper33]
[2019 w.4] [19-01-24] [paper31]
[2019 w.3] [19-01-17] [paper28]
[2019 w.2] [18-09-30] [paper8]
  • Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh
  • 2018-07-04, ICML2018 Workshop

Reading Group Papers in 2018:

[2018 w.50] [18-12-12] [paper26]
[2018 w.49] [18-11-29] [paper23]
[2018 w.48] [18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018
[2018 w.47] [18-11-22] [paper21]
  • When Recurrent Models Don't Need To Be Recurrent (a.k.a. Stable Recurrent Models) [pdf] [pdf with comments] [summary]
  • John Miller, Moritz Hardt
  • 2018-05-29, ICLR2019
[2018 w.46] [18-11-15] [paper19]
  • Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) [pdf] [pdf with comments] [summary]
  • Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, Rory Sayres
  • 2018-06-07, ICML2018
[2018 w.45] [18-11-08] [paper17]
[2018 w.44] [18-09-27] [paper7]
  • Conditional Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami
  • 2018-07-04, ICML2018
[2018 w.43] [18-10-25] [paper15]
  • Bayesian Convolutional Neural Networks with Many Channels are Gaussian Processes [pdf] [pdf with comments] [summary]
  • Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein
  • 2018-10-11, ICLR2019
[2018 w.41] [18-10-04] [paper9]
  • On gradient regularizers for MMD GANs [pdf] [pdf with comments] [summary]
  • Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton
  • 2018-05-29, NeurIPS2018
[2018 w.39] [18-09-27] [paper6]
[2018 w.38] [18-09-20] [paper1]
  • Gaussian Process Behaviour in Wide Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, Zoubin Ghahramani
  • 2018-08-16, ICLR2018



SysCon Monte Carlo Reading Group:

[2019 w.6 II]
  • The Continuous-Discrete Time Feedback Particle Filter [pdf]
  • Tao Yang, Henk A. P. Blom, Prashant G. Mehta
  • 2014, American Control Conference
[2019 w.6 I]
  • Feedback Particle Filter [pdf]
  • Tao Yang, Prashant G. Mehta, Sean P. Meyn
  • 2013, IEEE Transactions on Automatic Control
[2019 w.3]
  • Markov Chains for Exploring Posterior Distributions [pdf] [pdf with comments]
  • Luke Tierney
  • 1994-12, The Annals of Statistics
[2018 w.50 II]
  • Particle Gibbs with Ancestor Sampling [pdf]
  • Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön
  • 2014-06-14, Journal of Machine Learning Research
[2018 w.50 I]
  • Particle Markov chain Monte Carlo methods [pdf]
  • Christophe Andrieu, Arnaud Doucet, Roman Holenstein
  • 2010, Journal of the Royal Statistical Society
[2018 w.48]
  • State Space LSTM Models with Particle MCMC Inference [pdf]
  • Xun Zheng, Manzil Zaheer, Amr Ahmed, Yuan Wang, Eric P Xing, Alexander J Smola
  • 2017-11-30
[2018 w.46]
  • Rethinking the Effective Sample Size [pdf]
  • Víctor Elvira, Luca Martino, Christian P. Robert
  • `2018-09-11,



NeurIPS:

NeurIPS 2018:

[19-03-04] [paper49]
[19-02-27] [paper47]
[19-02-17] [paper44]
[19-02-05] [paper38]
[19-01-17] [paper28]
[19-01-09] [paper27]
  • Relaxed Softmax: Efficient Confidence Auto-Calibration for Safe Pedestrian Detection [pdf] [poster] [pdf with comments] [summary]
  • Lukas Neumann, Andrew Zisserman, Andrea Vedaldi
  • 2018-11-29, NeurIPS2018 Workshop
[18-12-12] [paper26]
[18-11-29] [paper23]
[18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018
[18-10-04] [paper9]
  • On gradient regularizers for MMD GANs [pdf] [pdf with comments] [summary]
  • Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton
  • 2018-05-29, NeurIPS2018

NeurIPS 2017:

[19-05-29] [paper54]
  • Attention Is All You Need [pdf] [pdf with comments] [comments]
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • 2017-06-12, NeurIPS2017
[18-10-18] [paper13]
  • Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles [pdf] [pdf with comments] [summary]
  • Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell
  • 2017-11-17, NeurIPS2017
[18-09-24] [paper2]

NeurIPS 2015:

[19-02-12] [paper41]
[19-01-25] [paper33]

NeurIPS 2011:

[19-01-28] [paper37]



ICML:

ICML 2018:

[19-02-07] [paper40]
[18-11-15] [paper19]
  • Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) [pdf] [pdf with comments] [summary]
  • Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, Rory Sayres
  • 2018-06-07, ICML2018
[18-10-18] [paper12]
  • Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors [pdf] [pdf with comments] [summary]
  • Danijar Hafner, Dustin Tran, Alex Irpan, Timothy Lillicrap, James Davidson
  • 2018-07-24, ICML2018 Workshop
[18-09-30] [paper8]
  • Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh
  • 2018-07-04, ICML2018 Workshop
[18-09-27] [paper7]
  • Conditional Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami
  • 2018-07-04, ICML2018
[18-09-27] [paper6]

ICML 2017:

[18-12-05] [paper24]

ICML 2015:

[19-10-11] [paper62]
[19-02-06] [paper39]
  • Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks [pdf] [pdf with comments] [comments]
  • José Miguel Hernández-Lobato, Ryan P. Adams
  • 2015-07-15, ICML2015
[19-01-27] [paper36]

ICML 2014:

[19-01-23] [paper30]

ICML 2011:

[19-01-23] [paper29]



ICLR:

ICLR 2019:

[19-10-04] [paper61]
[19-03-29] [paper52]
  • Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling [pdf] [pdf with comments] [comments]
  • Jacob Menick, Nal Kalchbrenner
  • 2018-12-04, ICLR2019
[19-01-25] [paper34]
[18-11-22] [paper21]
  • When Recurrent Models Don't Need To Be Recurrent (a.k.a. Stable Recurrent Models) [pdf] [pdf with comments] [summary]
  • John Miller, Moritz Hardt
  • 2018-05-29, ICLR2019
[18-11-08] [paper17]
[18-10-25] [paper15]
  • Bayesian Convolutional Neural Networks with Many Channels are Gaussian Processes [pdf] [pdf with comments] [summary]
  • Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein
  • 2018-10-11, ICLR2019

ICLR 2018:

[18-09-20] [paper1]
  • Gaussian Process Behaviour in Wide Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, Zoubin Ghahramani
  • 2018-08-16, ICLR2018

ICLR 2017:

[19-03-15] [paper51]

ICLR 2014:

[19-03-11] [paper50]



CVPR:

CVPR 2019:

[19-07-10] [paper59]
[19-06-12] [paper57]
[19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019

CVPR 2018:

[18-10-05] [paper11]
[18-10-04] [paper10]
[18-09-24] [paper3]

CVPR 2016:

[19-01-26] [paper35]
  • Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification [pdf] [poster] [pdf with comments] [comments]
  • Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin
  • CVPR2016



ECCV:

ECCV 2018:

[19-06-12] [paper56]
[18-11-16] [paper20]
  • Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow [pdf] [pdf with comments] [summary]
  • Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
  • 2018-08-06, ECCV2018



Papers by Year:

2019:

[19-07-11] [paper60]
  • Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud [pdf] [pdf with comments] [comments]
  • Shaoshuai Shi, Zhe Wang, Xiaogang Wang, Hongsheng Li
  • 2019-07-08
[19-07-03] [paper58]
[19-06-05] [paper55]
  • LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving [pdf] [pdf with comments] [comments]
  • Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington
  • 2019-03-20, CVPR2019
[19-03-01] [paper48]
[19-02-25] [paper46]
  • Evaluating model calibration in classification [pdf] [code] [pdf with comments] [comments]
  • Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, Thomas B. Schön
  • 2019-02-19, AISTATS2019
[19-02-22] [paper45]
  • Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks [pdf] [pdf with comments] [comments]
  • Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruosong Wang
  • 2019-01-24
[19-02-14] [paper43]
[19-02-13] [paper42]

2018:

[19-10-04] [paper61]
[19-07-10] [paper59]
[19-06-12] [paper57]
[19-06-12] [paper56]
[19-03-29] [paper52]
  • Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling [pdf] [pdf with comments] [comments]
  • Jacob Menick, Nal Kalchbrenner
  • 2018-12-04, ICLR2019
[19-03-04] [paper49]
[19-02-27] [paper47]
[19-02-05] [paper38]
[19-01-25] [paper34]
[19-01-24] [paper31]
[19-01-17] [paper28]
[19-01-09] [paper27]
  • Relaxed Softmax: Efficient Confidence Auto-Calibration for Safe Pedestrian Detection [pdf] [poster] [pdf with comments] [summary]
  • Lukas Neumann, Andrew Zisserman, Andrea Vedaldi
  • 2018-11-29, NeurIPS2018 Workshop
[18-12-12] [paper26]
[18-12-06] [paper25]
[18-11-29] [paper23]
[18-11-22] [paper22]
  • A Probabilistic U-Net for Segmentation of Ambiguous Images [pdf] [code] [pdf with comments] [summary]
  • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
  • 2018-10-29, NeurIPS2018
[18-11-22] [paper21]
  • When Recurrent Models Don't Need To Be Recurrent (a.k.a. Stable Recurrent Models) [pdf] [pdf with comments] [summary]
  • John Miller, Moritz Hardt
  • 2018-05-29, ICLR2019
[18-11-16] [paper20]
  • Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow [pdf] [pdf with comments] [summary]
  • Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
  • 2018-08-06, ECCV2018
[18-11-15] [paper19]
  • Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) [pdf] [pdf with comments] [summary]
  • Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, Rory Sayres
  • 2018-06-07, ICML2018
[18-11-12] [paper18]
  • Large-Scale Visual Active Learning with Deep Probabilistic Ensembles [pdf] [pdf with comments] [summary]
  • Kashyap Chitta, Jose M. Alvarez, Adam Lesnikowski
  • 2018-11-08
[18-11-08] [paper17]
[18-10-26] [paper16]
  • Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Klaus Dietmayer
  • 2018-09-08, ITSC2018
[18-10-25] [paper15]
  • Bayesian Convolutional Neural Networks with Many Channels are Gaussian Processes [pdf] [pdf with comments] [summary]
  • Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein
  • 2018-10-11, ICLR2019
[18-10-19] [paper14]
  • Uncertainty in Neural Networks: Bayesian Ensembling [pdf] [pdf with comments] [summary]
  • Tim Pearce, Mohamed Zaki, Alexandra Brintrup, Andy Neel
  • 2018-10-12, AISTATS2019 submission
[18-10-18] [paper12]
  • Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors [pdf] [pdf with comments] [summary]
  • Danijar Hafner, Dustin Tran, Alex Irpan, Timothy Lillicrap, James Davidson
  • 2018-07-24, ICML2018 Workshop
[18-10-04] [paper10]
[18-10-04] [paper9]
  • On gradient regularizers for MMD GANs [pdf] [pdf with comments] [summary]
  • Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton
  • 2018-05-29, NeurIPS2018
[18-09-30] [paper8]
  • Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh
  • 2018-07-04, ICML2018 Workshop
[18-09-27] [paper7]
  • Conditional Neural Processes [pdf] [pdf with comments] [summary]
  • Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami
  • 2018-07-04, ICML2018
[18-09-27] [paper6]
[18-09-25] [paper5]
  • Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Isidro Cortes-Ciriano, Andreas Bender
  • 2018-09-24
[18-09-25] [paper4]
  • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection [pdf] [pdf with comments] [summary]
  • Di Feng, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer
  • 2018-09-14
[18-09-24] [paper3]
[18-09-20] [paper1]
  • Gaussian Process Behaviour in Wide Deep Neural Networks [pdf] [pdf with comments] [summary]
  • Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, Zoubin Ghahramani
  • 2018-08-16, ICLR2018

2017:

[19-05-29] [paper54]
  • Attention Is All You Need [pdf] [pdf with comments] [comments]
  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
  • 2017-06-12, NeurIPS2017
[19-04-05] [paper53]
  • Stochastic Gradient Descent as Approximate Bayesian Inference [pdf] [pdf with comments] [comments]
  • Stephan Mandt, Matthew D. Hoffman, David M. Blei
  • 2017-04-13, Journal of Machine Learning Research 18 (2017)
[19-02-17] [paper44]
[19-02-07] [paper40]
[18-12-05] [paper24]
[18-10-18] [paper13]
  • Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles [pdf] [pdf with comments] [summary]
  • Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell
  • 2017-11-17, NeurIPS2017
[18-10-05] [paper11]
[18-09-24] [paper2]

2016:

[19-03-15] [paper51]
[19-01-26] [paper35]
  • Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification [pdf] [poster] [pdf with comments] [comments]
  • Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin
  • CVPR2016
[19-01-24] [paper32]
  • Tutorial: Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods [pdf] [pdf with comments]
  • Changyou Chen
  • 2016-08-10

2015:

[19-10-11] [paper62]
[19-02-12] [paper41]
[19-02-06] [paper39]
  • Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks [pdf] [pdf with comments] [comments]
  • José Miguel Hernández-Lobato, Ryan P. Adams
  • 2015-07-15, ICML2015
[19-01-27] [paper36]
[19-01-25] [paper33]

2014:

[19-03-11] [paper50]
[19-01-23] [paper30]

2011:

[19-01-28] [paper37]
[19-01-23] [paper29]

About

Summaries of papers on machine learning, computer vision, autonomous robots etc.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published