forked from localminimum/QANet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Major Change in structure to adopt R-Net by HKUST-KnowComp
- Loading branch information
1 parent
df4120a
commit 80c5b86
Showing
16 changed files
with
963 additions
and
1,531 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import os | ||
import tensorflow as tf | ||
|
||
''' | ||
This file is taken and modified from R-Net by HKUST-KnowComp | ||
https://github.com/HKUST-KnowComp/R-Net | ||
''' | ||
|
||
from prepro import prepro | ||
from main import train, test | ||
|
||
flags = tf.flags | ||
|
||
home = os.path.expanduser("~") | ||
train_file = os.path.join(home, "data", "squad", "train-v1.1.json") | ||
dev_file = os.path.join(home, "data", "squad", "dev-v1.1.json") | ||
test_file = os.path.join(home, "data", "squad", "dev-v1.1.json") | ||
glove_word_file = os.path.join(home, "data", "glove", "glove.840B.300d.txt") | ||
|
||
target_dir = "data" | ||
log_dir = "log/event" | ||
save_dir = "log/model" | ||
answer_dir = "log/answer" | ||
train_record_file = os.path.join(target_dir, "train.tfrecords") | ||
dev_record_file = os.path.join(target_dir, "dev.tfrecords") | ||
test_record_file = os.path.join(target_dir, "test.tfrecords") | ||
word_emb_file = os.path.join(target_dir, "word_emb.json") | ||
char_emb_file = os.path.join(target_dir, "char_emb.json") | ||
train_eval = os.path.join(target_dir, "train_eval.json") | ||
dev_eval = os.path.join(target_dir, "dev_eval.json") | ||
test_eval = os.path.join(target_dir, "test_eval.json") | ||
dev_meta = os.path.join(target_dir, "dev_meta.json") | ||
test_meta = os.path.join(target_dir, "test_meta.json") | ||
answer_file = os.path.join(answer_dir, "answer.json") | ||
|
||
if not os.path.exists(target_dir): | ||
os.makedirs(target_dir) | ||
if not os.path.exists(log_dir): | ||
os.makedirs(log_dir) | ||
if not os.path.exists(save_dir): | ||
os.makedirs(save_dir) | ||
if not os.path.exists(answer_dir): | ||
os.makedirs(answer_dir) | ||
|
||
flags.DEFINE_string("mode", "train", "Running mode train/debug/test") | ||
|
||
flags.DEFINE_string("target_dir", target_dir, "Target directory for out data") | ||
flags.DEFINE_string("log_dir", log_dir, "Directory for tf event") | ||
flags.DEFINE_string("save_dir", save_dir, "Directory for saving model") | ||
flags.DEFINE_string("train_file", train_file, "Train source file") | ||
flags.DEFINE_string("dev_file", dev_file, "Dev source file") | ||
flags.DEFINE_string("test_file", test_file, "Test source file") | ||
flags.DEFINE_string("glove_word_file", glove_word_file, "Glove word embedding source file") | ||
|
||
flags.DEFINE_string("train_record_file", train_record_file, "Out file for train data") | ||
flags.DEFINE_string("dev_record_file", dev_record_file, "Out file for dev data") | ||
flags.DEFINE_string("test_record_file", test_record_file, "Out file for test data") | ||
flags.DEFINE_string("word_emb_file", word_emb_file, "Out file for word embedding") | ||
flags.DEFINE_string("char_emb_file", char_emb_file, "Out file for char embedding") | ||
flags.DEFINE_string("train_eval_file", train_eval, "Out file for train eval") | ||
flags.DEFINE_string("dev_eval_file", dev_eval, "Out file for dev eval") | ||
flags.DEFINE_string("test_eval_file", test_eval, "Out file for test eval") | ||
flags.DEFINE_string("dev_meta", dev_meta, "Out file for dev meta") | ||
flags.DEFINE_string("test_meta", test_meta, "Out file for test meta") | ||
flags.DEFINE_string("answer_file", answer_file, "Out file for answer") | ||
|
||
|
||
flags.DEFINE_integer("glove_char_size", 94, "Corpus size for Glove") | ||
flags.DEFINE_integer("glove_word_size", int(2.2e6), "Corpus size for Glove") | ||
flags.DEFINE_integer("glove_dim", 300, "Embedding dimension for Glove") | ||
flags.DEFINE_integer("char_dim", 200, "Embedding dimension for char") | ||
|
||
flags.DEFINE_integer("para_limit", 400, "Limit length for paragraph") | ||
flags.DEFINE_integer("ques_limit", 50, "Limit length for question") | ||
flags.DEFINE_integer("test_para_limit", 1000, "Limit length for paragraph in test file") | ||
flags.DEFINE_integer("test_ques_limit", 100, "Limit length for question in test file") | ||
flags.DEFINE_integer("char_limit", 16, "Limit length for character") | ||
flags.DEFINE_integer("word_count_limit", -1, "Min count for word") | ||
flags.DEFINE_integer("char_count_limit", -1, "Min count for char") | ||
|
||
flags.DEFINE_integer("capacity", 15000, "Batch size of dataset shuffle") | ||
flags.DEFINE_integer("num_threads", 4, "Number of threads in input pipeline") | ||
flags.DEFINE_boolean("is_bucket", False, "build bucket batch iterator or not") | ||
flags.DEFINE_list("bucket_range", [40, 401, 40], "the range of bucket") | ||
|
||
flags.DEFINE_integer("batch_size", 32, "Batch size") | ||
flags.DEFINE_integer("num_steps", 60000, "Number of steps") | ||
flags.DEFINE_integer("checkpoint", 1000, "checkpoint to save and evaluate the model") | ||
flags.DEFINE_integer("period", 100, "period to save batch loss") | ||
flags.DEFINE_integer("val_num_batches", 150, "Number of batches to evaluate the model") | ||
flags.DEFINE_float("dropout", 0.1, "Dropout prob across the layers") | ||
flags.DEFINE_float("grad_clip", 5.0, "Global Norm gradient clipping rate") | ||
flags.DEFINE_float("learning_rate", 0.001, "Learning rate") | ||
flags.DEFINE_float("decay", 0.9999, "Exponential moving average decay") | ||
flags.DEFINE_float("l2_norm", 3e-7, "L2 norm scale") | ||
flags.DEFINE_integer("hidden", 128, "Hidden size") | ||
flags.DEFINE_integer("num_heads", 1, "Number of heads in self attention") | ||
|
||
# Extensions (Uncomment corresponding code in download.sh to download the required data) | ||
glove_char_file = os.path.join(home, "data", "glove", "glove.840B.300d-char.txt") | ||
flags.DEFINE_string("glove_char_file", glove_char_file, "Glove character embedding source file") | ||
flags.DEFINE_boolean("pretrained_char", False, "Whether to use pretrained character embedding") | ||
|
||
fasttext_file = os.path.join(home, "data", "fasttext", "wiki-news-300d-1M.vec") | ||
flags.DEFINE_string("fasttext_file", fasttext_file, "Fasttext word embedding source file") | ||
flags.DEFINE_boolean("fasttext", False, "Whether to use fasttext") | ||
|
||
|
||
def main(_): | ||
config = flags.FLAGS | ||
if config.mode == "train": | ||
train(config) | ||
elif config.mode == "prepro": | ||
prepro(config) | ||
elif config.mode == "debug": | ||
config.num_steps = 2 | ||
config.val_num_batches = 1 | ||
config.checkpoint = 1 | ||
config.period = 1 | ||
train(config) | ||
elif config.mode == "test": | ||
if config.use_cudnn: | ||
print("Warning: Due to a known bug in Tensorlfow, the parameters of CudnnGRU may not be properly restored.") | ||
test(config) | ||
else: | ||
print("Unknown mode") | ||
exit(0) | ||
|
||
|
||
if __name__ == "__main__": | ||
tf.app.run() |
Oops, something went wrong.