Skip to content

astirn/VampPrior-Mixture-Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The VampPrior Mixture Model

This code generates all results in our manuscript:

@misc{stirn2024vampprior,
      title={The VampPrior Mixture Model}, 
      author={Andrew Stirn and David A. Knowles},
      year={2024},
      eprint={2402.04412},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

PWC

PWC

PWC

Package Requirements

Our Dockerfile creates the computational environment from TensorFlow's official image for version 2.15.0 with GPU support and uses requirements.txt to install additionally required packages.

Reproducing Experiments

Run clustering_experiments_run.sh to produce Table 1 and Figures 1 and 3.

Run elbo_surgery_run.sh to produce Table 2.

Run single_cell_experiments_run.sh to produce Tables 3 and 4 and Figures 2, 4-6.

Repository Overview

priors.py implements the our Bayesian GMM and VMM.

models.py contains the VAE models.

single_cell_models.py has our implementation of scVI (Lopez et al., 2018).

clustering_*.py are used by clustering_experiments_run.sh.

elbo_surgery_*.py are used by elbo_surgery_run.sh.

single_cell_*.py are used by single_cell_experiments_run.sh.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages