Skip to content

Commit

Permalink
Move Generative Agent definition to Experimental (langchain-ai#3245)
Browse files Browse the repository at this point in the history
Extending @BeautyyuYanli 's langchain-ai#3220 to move from the notebook

---------

Co-authored-by: BeautyyuYanli <[email protected]>
  • Loading branch information
vowelparrot and BeautyyuYanli authored Apr 24, 2023
1 parent 20f530e commit 738ee56
Show file tree
Hide file tree
Showing 8 changed files with 627 additions and 1,704 deletions.
1 change: 1 addition & 0 deletions docs/reference.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@ Full documentation on all methods, classes, and APIs in LangChain.
./reference/modules/chains.rst
./reference/agents.rst
./reference/modules/utilities.rst
./reference/modules/experimental.rst
28 changes: 28 additions & 0 deletions docs/reference/modules/experimental.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
==========
Experimental Modules
==========

This module contains experimental modules and reproductions of existing work using LangChain primitives.

Autonomous Agents
------------------

Here, we document the BabyAGI and AutoGPT classes from the langchain.experimental module.

.. autoclass:: langchain.experimental.BabyAGI
:members:

.. autoclass:: langchain.experimental.AutoGPT
:members:


Generative Agents
------------------

Here, we document the GenerativeAgent and GenerativeAgentMemory classes from the langchain.experimental module.

.. autoclass:: langchain.experimental.GenerativeAgent
:members:

.. autoclass:: langchain.experimental.GenerativeAgentMemory
:members:
590 changes: 148 additions & 442 deletions docs/use_cases/agent_simulations/characters.ipynb

Large diffs are not rendered by default.

1,261 changes: 0 additions & 1,261 deletions docs/use_cases/agents/characters.ipynb

This file was deleted.

4 changes: 3 additions & 1 deletion langchain/experimental/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
from langchain.experimental.autonomous_agents.autogpt.agent import AutoGPT
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
from langchain.experimental.generative_agents.generative_agent import GenerativeAgent
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory

__all__ = ["BabyAGI", "AutoGPT"]
__all__ = ["BabyAGI", "AutoGPT", "GenerativeAgent", "GenerativeAgentMemory"]
5 changes: 5 additions & 0 deletions langchain/experimental/generative_agents/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
"""Generative Agents primitives."""
from langchain.experimental.generative_agents.generative_agent import GenerativeAgent
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory

__all__ = ["GenerativeAgent", "GenerativeAgentMemory"]
230 changes: 230 additions & 0 deletions langchain/experimental/generative_agents/generative_agent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@
import re
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple

from pydantic import BaseModel, Field

from langchain import LLMChain
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
from langchain.prompts import PromptTemplate
from langchain.schema import BaseLanguageModel


class GenerativeAgent(BaseModel):
"""A character with memory and innate characteristics."""

name: str
"""The character's name."""

age: Optional[int] = None
"""The optional age of the character."""
traits: str = "N/A"
"""Permanent traits to ascribe to the character."""
status: str
"""The traits of the character you wish not to change."""
memory: GenerativeAgentMemory
"""The memory object that combines relevance, recency, and 'importance'."""
llm: BaseLanguageModel
"""The underlying language model."""
verbose: bool = False
summary: str = "" #: :meta private:
"""Stateful self-summary generated via reflection on the character's memory."""

summary_refresh_seconds: int = 3600 #: :meta private:
"""How frequently to re-generate the summary."""

last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private:
"""The last time the character's summary was regenerated."""

daily_summaries: List[str] = Field(default_factory=list) # : :meta private:
"""Summary of the events in the plan that the agent took."""

class Config:
"""Configuration for this pydantic object."""

arbitrary_types_allowed = True

# LLM-related methods
@staticmethod
def _parse_list(text: str) -> List[str]:
"""Parse a newline-separated string into a list of strings."""
lines = re.split(r"\n", text.strip())
return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]

def chain(self, prompt: PromptTemplate) -> LLMChain:
return LLMChain(
llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory
)

def _get_entity_from_observation(self, observation: str) -> str:
prompt = PromptTemplate.from_template(
"What is the observed entity in the following observation? {observation}"
+ "\nEntity="
)
return self.chain(prompt).run(observation=observation).strip()

def _get_entity_action(self, observation: str, entity_name: str) -> str:
prompt = PromptTemplate.from_template(
"What is the {entity} doing in the following observation? {observation}"
+ "\nThe {entity} is"
)
return (
self.chain(prompt).run(entity=entity_name, observation=observation).strip()
)

def summarize_related_memories(self, observation: str) -> str:
"""Summarize memories that are most relevant to an observation."""
prompt = PromptTemplate.from_template(
"""
{q1}?
Context from memory:
{relevant_memories}
Relevant context:
"""
)
entity_name = self._get_entity_from_observation(observation)
entity_action = self._get_entity_action(observation, entity_name)
q1 = f"What is the relationship between {self.name} and {entity_name}"
q2 = f"{entity_name} is {entity_action}"
return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip()

def _generate_reaction(self, observation: str, suffix: str) -> str:
"""React to a given observation or dialogue act."""
prompt = PromptTemplate.from_template(
"{agent_summary_description}"
+ "\nIt is {current_time}."
+ "\n{agent_name}'s status: {agent_status}"
+ "\nSummary of relevant context from {agent_name}'s memory:"
+ "\n{relevant_memories}"
+ "\nMost recent observations: {most_recent_memories}"
+ "\nObservation: {observation}"
+ "\n\n"
+ suffix
)
agent_summary_description = self.get_summary()
relevant_memories_str = self.summarize_related_memories(observation)
current_time_str = datetime.now().strftime("%B %d, %Y, %I:%M %p")
kwargs: Dict[str, Any] = dict(
agent_summary_description=agent_summary_description,
current_time=current_time_str,
relevant_memories=relevant_memories_str,
agent_name=self.name,
observation=observation,
agent_status=self.status,
)
consumed_tokens = self.llm.get_num_tokens(
prompt.format(most_recent_memories="", **kwargs)
)
kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens
return self.chain(prompt=prompt).run(**kwargs).strip()

def _clean_response(self, text: str) -> str:
return re.sub(f"^{self.name} ", "", text.strip()).strip()

def generate_reaction(self, observation: str) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"Should {agent_name} react to the observation, and if so,"
+ " what would be an appropriate reaction? Respond in one line."
+ ' If the action is to engage in dialogue, write:\nSAY: "what to say"'
+ "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)."
+ "\nEither do nothing, react, or say something but not both.\n\n"
)
full_result = self._generate_reaction(observation, call_to_action_template)
result = full_result.strip().split("\n")[0]
# AAA
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and reacted by {result}"
},
)
if "REACT:" in result:
reaction = self._clean_response(result.split("REACT:")[-1])
return False, f"{self.name} {reaction}"
if "SAY:" in result:
said_value = self._clean_response(result.split("SAY:")[-1])
return True, f"{self.name} said {said_value}"
else:
return False, result

def generate_dialogue_response(self, observation: str) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"What would {agent_name} say? To end the conversation, write:"
' GOODBYE: "what to say". Otherwise to continue the conversation,'
' write: SAY: "what to say next"\n\n'
)
full_result = self._generate_reaction(observation, call_to_action_template)
result = full_result.strip().split("\n")[0]
if "GOODBYE:" in result:
farewell = self._clean_response(result.split("GOODBYE:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {farewell}"
},
)
return False, f"{self.name} said {farewell}"
if "SAY:" in result:
response_text = self._clean_response(result.split("SAY:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {response_text}"
},
)
return True, f"{self.name} said {response_text}"
else:
return False, result

######################################################
# Agent stateful' summary methods. #
# Each dialog or response prompt includes a header #
# summarizing the agent's self-description. This is #
# updated periodically through probing its memories #
######################################################
def _compute_agent_summary(self) -> str:
""""""
prompt = PromptTemplate.from_template(
"How would you summarize {name}'s core characteristics given the"
+ " following statements:\n"
+ "{relevant_memories}"
+ "Do not embellish."
+ "\n\nSummary: "
)
# The agent seeks to think about their core characteristics.
return (
self.chain(prompt)
.run(name=self.name, queries=[f"{self.name}'s core characteristics"])
.strip()
)

def get_summary(self, force_refresh: bool = False) -> str:
"""Return a descriptive summary of the agent."""
current_time = datetime.now()
since_refresh = (current_time - self.last_refreshed).seconds
if (
not self.summary
or since_refresh >= self.summary_refresh_seconds
or force_refresh
):
self.summary = self._compute_agent_summary()
self.last_refreshed = current_time
age = self.age if self.age is not None else "N/A"
return (
f"Name: {self.name} (age: {age})"
+ f"\nInnate traits: {self.traits}"
+ f"\n{self.summary}"
)

def get_full_header(self, force_refresh: bool = False) -> str:
"""Return a full header of the agent's status, summary, and current time."""
summary = self.get_summary(force_refresh=force_refresh)
current_time_str = datetime.now().strftime("%B %d, %Y, %I:%M %p")
return (
f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}"
)
Loading

0 comments on commit 738ee56

Please sign in to comment.