Skip to content

benbaker76/diffvg

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

diffvg

Differentiable Rasterizer for Vector Graphics https://people.csail.mit.edu/tzumao/diffvg

diffvg is a differentiable rasterizer for 2D vector graphics. See the webpage for more info.

teaser

circle ellipse rect polygon curve path gradient circle_outline ellipse_transform

Install (Windows)

  1. Install Python 3.10 from the Microsoft Store
  2. Install the CUDA Toolkit
  3. Install ffmpeg. Make sure ffmpeg is added to your PATH environment variable (Eg. C:\FFmpeg\bin)
> git clone https://github.com/benbaker76/diffvg
> cd diffvg
> git submodule update --init --recursive
> git -m venv .venv
> ./.venv/Scripts/activate
> pip install torch==2.4.0+cu124 torchvision==0.19.0+cu124 --index-url https://download.pytorch.org/whl/cu124
> pip install -r requirements.txt
> set LIBDIR=.\.venv\Lib\site-packages
> python setup.py bdist_wheel
> pip install dist/diffvg-0.0.1-cp310-cp310-win_amd64.whl
# Test it's working
> python apps\refine_svg.py
usage: refine_svg.py [-h] [--use_lpips_loss] [--num_iter NUM_ITER] svg target
refine_svg.py: error: the following arguments are required: svg, target

Run

cd apps

Optimizing a single circle to a target.

python single_circle.py

Finite difference comparison.

finite_difference_comp.py [-h] [--size_scale SIZE_SCALE]
                               [--clamping_factor CLAMPING_FACTOR]
                               [--use_prefiltering USE_PREFILTERING]
                               svg_file

e.g.,

python finite_difference_comp.py imgs/tiger.svg

Interactive editor

python svg_brush.py

Painterly rendering

painterly_rendering.py [-h] [--num_paths NUM_PATHS]
                       [--max_width MAX_WIDTH] [--use_lpips_loss]
                       [--num_iter NUM_ITER] [--use_blob]
                       target

e.g.,

python painterly_rendering.py imgs/fallingwater.jpg --num_paths 2048 --max_width 4.0 --use_lpips_loss

Image vectorization

python refine_svg.py [-h] [--use_lpips_loss] [--num_iter NUM_ITER] svg target

e.g.,

python refine_svg.py imgs/flower.svg imgs/flower.jpg

Seam carving

python seam_carving.py [-h] [--svg SVG] [--optim_steps OPTIM_STEPS]

e.g.,

python seam_carving.py imgs/hokusai.svg

Vector variational autoencoder & vector GAN:

For the GAN models, see apps/generative_models/train_gan.py. Generate samples from a pretrained using apps/generative_models/eval_gan.py.

For the VAE models, see apps/generative_models/mnist_vae.py.

If you use diffvg in your academic work, please cite

@article{Li:2020:DVG,
    title = {Differentiable Vector Graphics Rasterization for Editing and Learning},
    author = {Li, Tzu-Mao and Luk\'{a}\v{c}, Michal and Gharbi Micha\"{e}l and Jonathan Ragan-Kelley},
    journal = {ACM Trans. Graph. (Proc. SIGGRAPH Asia)},
    volume = {39},
    number = {6},
    pages = {193:1--193:15},
    year = {2020}
}

About

Differentiable Vector Graphics Rasterization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 63.6%
  • C++ 31.8%
  • C 3.7%
  • Other 0.9%