forked from Fanghua-Yu/SUPIR
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f874d90
commit f5d54aa
Showing
6 changed files
with
1,148 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import sys | ||
import contextlib | ||
from functools import lru_cache | ||
|
||
import torch | ||
#from modules import errors | ||
|
||
if sys.platform == "darwin": | ||
from modules import mac_specific | ||
|
||
|
||
def has_mps() -> bool: | ||
if sys.platform != "darwin": | ||
return False | ||
else: | ||
return mac_specific.has_mps | ||
|
||
|
||
def get_cuda_device_string(): | ||
return "cuda" | ||
|
||
|
||
def get_optimal_device_name(): | ||
if torch.cuda.is_available(): | ||
return get_cuda_device_string() | ||
|
||
if has_mps(): | ||
return "mps" | ||
|
||
return "cpu" | ||
|
||
|
||
def get_optimal_device(): | ||
return torch.device(get_optimal_device_name()) | ||
|
||
|
||
def get_device_for(task): | ||
return get_optimal_device() | ||
|
||
|
||
def torch_gc(): | ||
|
||
if torch.cuda.is_available(): | ||
with torch.cuda.device(get_cuda_device_string()): | ||
torch.cuda.empty_cache() | ||
torch.cuda.ipc_collect() | ||
|
||
if has_mps(): | ||
mac_specific.torch_mps_gc() | ||
|
||
|
||
def enable_tf32(): | ||
if torch.cuda.is_available(): | ||
|
||
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't | ||
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 | ||
if any(torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())): | ||
torch.backends.cudnn.benchmark = True | ||
|
||
torch.backends.cuda.matmul.allow_tf32 = True | ||
torch.backends.cudnn.allow_tf32 = True | ||
|
||
|
||
enable_tf32() | ||
#errors.run(enable_tf32, "Enabling TF32") | ||
|
||
cpu = torch.device("cpu") | ||
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = torch.device("cuda") | ||
dtype = torch.float16 | ||
dtype_vae = torch.float16 | ||
dtype_unet = torch.float16 | ||
unet_needs_upcast = False | ||
|
||
|
||
def cond_cast_unet(input): | ||
return input.to(dtype_unet) if unet_needs_upcast else input | ||
|
||
|
||
def cond_cast_float(input): | ||
return input.float() if unet_needs_upcast else input | ||
|
||
|
||
def randn(seed, shape): | ||
torch.manual_seed(seed) | ||
return torch.randn(shape, device=device) | ||
|
||
|
||
def randn_without_seed(shape): | ||
return torch.randn(shape, device=device) | ||
|
||
|
||
def autocast(disable=False): | ||
if disable: | ||
return contextlib.nullcontext() | ||
|
||
return torch.autocast("cuda") | ||
|
||
|
||
def without_autocast(disable=False): | ||
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext() | ||
|
||
|
||
class NansException(Exception): | ||
pass | ||
|
||
|
||
def test_for_nans(x, where): | ||
if not torch.all(torch.isnan(x)).item(): | ||
return | ||
|
||
if where == "unet": | ||
message = "A tensor with all NaNs was produced in Unet." | ||
|
||
elif where == "vae": | ||
message = "A tensor with all NaNs was produced in VAE." | ||
|
||
else: | ||
message = "A tensor with all NaNs was produced." | ||
|
||
message += " Use --disable-nan-check commandline argument to disable this check." | ||
|
||
raise NansException(message) | ||
|
||
|
||
@lru_cache | ||
def first_time_calculation(): | ||
""" | ||
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and | ||
spends about 2.7 seconds doing that, at least wih NVidia. | ||
""" | ||
|
||
x = torch.zeros((1, 1)).to(device, dtype) | ||
linear = torch.nn.Linear(1, 1).to(device, dtype) | ||
linear(x) | ||
|
||
x = torch.zeros((1, 1, 3, 3)).to(device, dtype) | ||
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype) | ||
conv2d(x) |
Oops, something went wrong.