Skip to content

Commit

Permalink
Update YOLOv8-ONNXRuntime-CPP (ultralytics#3455)
Browse files Browse the repository at this point in the history
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <[email protected]>
  • Loading branch information
3 people authored Jul 4, 2023
1 parent 1c4a363 commit 69a2d70
Show file tree
Hide file tree
Showing 5 changed files with 453 additions and 0 deletions.
1 change: 1 addition & 0 deletions examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ This repository features a collection of real-world applications and walkthrough
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python | [Lakshantha](https://github.com/lakshanthad) |
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
| [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP) | C++/ONNXRuntime | [DennisJcy](https://github.com/DennisJcy) |

### How to Contribute

Expand Down
54 changes: 54 additions & 0 deletions examples/YOLOv8-ONNXRuntime-CPP/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# YOLOv8 OnnxRuntime C++

This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.

We recommend using Visual Studio to build the project.

## Benefits

- Friendly for deployment in the industrial sector.
- Faster than OpenCV's DNN inference on both CPU and GPU.
- Supports CUDA acceleration.
- Easy to add FP16 inference (using template functions).

## Exporting YOLOv8 Models

To export YOLOv8 models, use the following Python script:

```python
from ultralytics import YOLO

# Load a YOLOv8 model
model = YOLO("yolov8n.pt")

# Export the model
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
```

## Dependencies

| Dependency | Version |
| ----------------------- | -------- |
| Onnxruntime-win-x64-gpu | >=1.14.1 |
| OpenCV | >=4.0.0 |
| C++ | >=17 |

Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.

## Usage

```c++
// CPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, false};
// GPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, true};

// Load your image
cv::Mat img = cv::imread(img_path);

char* ret = p1->CreateSession(params);

ret = p->RunSession(img, res);
```
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.
271 changes: 271 additions & 0 deletions examples/YOLOv8-ONNXRuntime-CPP/inference.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,271 @@
#include "inference.h"
#include <regex>

#define benchmark
#define ELOG

DCSP_CORE::DCSP_CORE()
{

}


DCSP_CORE::~DCSP_CORE()
{
delete session;
}


template<typename T>
char* BlobFromImage(cv::Mat& iImg, T& iBlob)
{
int channels = iImg.channels();
int imgHeight = iImg.rows;
int imgWidth = iImg.cols;

for (int c = 0; c < channels; c++)
{
for (int h = 0; h < imgHeight; h++)
{
for (int w = 0; w < imgWidth; w++)
{
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = (std::remove_pointer<T>::type)((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
}
}
}
return RET_OK;
}


char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
{
cv::Mat img = iImg.clone();
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
if (img.channels() == 1)
{
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
}
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
return RET_OK;
}


char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
{
char* Ret = RET_OK;
std::regex pattern("[\u4e00-\u9fa5]");
bool result = std::regex_search(iParams.ModelPath, pattern);
if (result)
{
Ret = "[DCSP_ONNX]:model path error.change your model path without chinese characters.";
std::cout << Ret << std::endl;
return Ret;
}
try
{
rectConfidenceThreshold = iParams.RectConfidenceThreshold;
iouThreshold = iParams.iouThreshold;
imgSize = iParams.imgSize;
modelType = iParams.ModelType;
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
Ort::SessionOptions sessionOption;
if (iParams.CudaEnable)
{
cudaEnable = iParams.CudaEnable;
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = 0;
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
//OrtOpenVINOProviderOptions ovOption;
//sessionOption.AppendExecutionProvider_OpenVINO(ovOption);
}
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
wide_cstr[ModelPathSize] = L'\0';
const wchar_t* modelPath = wide_cstr;
session = new Ort::Session(env, modelPath, sessionOption);
Ort::AllocatorWithDefaultOptions allocator;
size_t inputNodesNum = session->GetInputCount();
for (size_t i = 0; i < inputNodesNum; i++)
{
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
char* temp_buf = new char[50];
strcpy(temp_buf, input_node_name.get());
inputNodeNames.push_back(temp_buf);
}

size_t OutputNodesNum = session->GetOutputCount();
for (size_t i = 0; i < OutputNodesNum; i++)
{
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
char* temp_buf = new char[10];
strcpy(temp_buf, output_node_name.get());
outputNodeNames.push_back(temp_buf);
}
options = Ort::RunOptions{ nullptr };
WarmUpSession();
//std::cout << OrtGetApiBase()->GetVersionString() << std::endl;;
Ret = RET_OK;
return Ret;
}
catch (const std::exception& e)
{
const char* str1 = "[DCSP_ONNX]:";
const char* str2 = e.what();
std::string result = std::string(str1) + std::string(str2);
char* merged = new char[result.length() + 1];
std::strcpy(merged, result.c_str());
std::cout << merged << std::endl;
delete[] merged;
//return merged;
return "[DCSP_ONNX]:Create session failed.";
}

}


char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
{
#ifdef benchmark
clock_t starttime_1 = clock();
#endif // benchmark

char* Ret = RET_OK;
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4)
{
float* blob = new float[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
}

return Ret;
}


template<typename N>
char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult)
{
Ort::Value inputTensor = Ort::Value::CreateTensor<std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
#ifdef benchmark
clock_t starttime_2 = clock();
#endif // benchmark
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size());
#ifdef benchmark
clock_t starttime_3 = clock();
#endif // benchmark
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
std::vector<int64_t>outputNodeDims = tensor_info.GetShape();
std::remove_pointer<N>::type* output = outputTensor.front().GetTensorMutableData<std::remove_pointer<N>::type>();
delete blob;
switch (modelType)
{
case 1:
{
int strideNum = outputNodeDims[2];
int signalResultNum = outputNodeDims[1];
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
rowData = rowData.t();

float* data = (float*)rowData.data;

float x_factor = iImg.cols / 640.;
float y_factor = iImg.rows / 640.;
for (int i = 0; i < strideNum; ++i)
{
float* classesScores = data + 4;
cv::Mat scores(1, classesNum, CV_32FC1, classesScores);
cv::Point class_id;
double maxClassScore;
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
if (maxClassScore > rectConfidenceThreshold)
{
confidences.push_back(maxClassScore);
class_ids.push_back(class_id.x);

float x = data[0];
float y = data[1];
float w = data[2];
float h = data[3];

int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);

int width = int(w * x_factor);
int height = int(h * y_factor);

boxes.push_back(cv::Rect(left, top, width, height));
}
data += signalResultNum;
}

std::vector<int> nmsResult;
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
for (int i = 0; i < nmsResult.size(); ++i)
{
int idx = nmsResult[i];
DCSP_RESULT result;
result.classId = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
oResult.push_back(result);
}


#ifdef benchmark
clock_t starttime_4 = clock();
double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
}
else
{
std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
}
#endif // benchmark

break;
}
}
char* Ret = RET_OK;
return Ret;
}


char* DCSP_CORE::WarmUpSession()
{
clock_t starttime_1 = clock();
char* Ret = RET_OK;
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4)
{
float* blob = new float[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
}

return Ret;
}
Loading

0 comments on commit 69a2d70

Please sign in to comment.