forked from KryogenBlue/DualEnergyCTSynthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Koori
authored and
Koori
committed
Apr 18, 2024
1 parent
4acb779
commit 05446e3
Showing
13 changed files
with
1,786 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
/utils/__pycache__ | ||
/output | ||
/network/__pycache__ | ||
/modules/__pycache__ | ||
/build_dataset/__pycache__ | ||
**/__init__.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
### pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net | ||
|
||
**(This repository is no longer being updated)** | ||
|
||
**U-Net: Convolutional Networks for Biomedical Image Segmentation** | ||
|
||
https://arxiv.org/abs/1505.04597 | ||
|
||
**Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation** | ||
|
||
https://arxiv.org/abs/1802.06955 | ||
|
||
**Attention U-Net: Learning Where to Look for the Pancreas** | ||
|
||
https://arxiv.org/abs/1804.03999 | ||
|
||
**Attention R2U-Net : Just integration of two recent advanced works (R2U-Net + Attention U-Net)** | ||
|
||
|
||
## U-Net | ||
![U-Net](/img/U-Net.png) | ||
|
||
|
||
## R2U-Net | ||
![R2U-Net](/img/R2U-Net.png) | ||
|
||
## Attention U-Net | ||
![AttU-Net](/img/AttU-Net.png) | ||
|
||
## Attention R2U-Net | ||
![AttR2U-Net](/img/AttR2U-Net.png) | ||
|
||
## Evaluation | ||
we just test the models with [ISIC 2018 dataset](https://challenge2018.isic-archive.com/task1/training/). The dataset was split into three subsets, training set, validation set, and test set, which the proportion is 70%, 10% and 20% of the whole dataset, respectively. The entire dataset contains 2594 images where 1815 images were used | ||
for training, 259 for validation and 520 for testing models. | ||
|
||
![evaluation](/img/Evaluation.png) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
|
||
import numpy as np | ||
import torch | ||
from torch.utils.data import DataLoader | ||
|
||
|
||
from utils.utils import normalize | ||
|
||
torch.use_deterministic_algorithms(True, warn_only=True) | ||
import os | ||
|
||
from torch.utils.data import IterableDataset | ||
from pytorch_lightning import LightningDataModule | ||
|
||
class NPYIterableDataset(IterableDataset): | ||
def __init__(self, root_dir): | ||
super().__init__() | ||
self.root_dir = root_dir | ||
self.files = [os.path.join(root_dir, f) for f in os.listdir(root_dir) if f.endswith('.npy')] | ||
|
||
def __len__(self): | ||
return len(self.files) | ||
|
||
def __iter__(self): | ||
for file in self.files: | ||
data = np.load(file, allow_pickle=True).item() | ||
image = data['data'] | ||
label = data['label'] | ||
patient_id = data['patient_id'] | ||
image_id = data['image_id'] | ||
yield torch.tensor(image, dtype=torch.float32), torch.tensor(label, dtype=torch.float32), str(patient_id), str(image_id) | ||
|
||
class NanjingPLA_DECT(LightningDataModule): | ||
def __init__(self,datatype,train_root_dir, valid_root_dir,test_root_dir, batch_size, gt_shape): | ||
super().__init__() | ||
self.datatype = datatype | ||
self.train_root_dir = train_root_dir | ||
self.valid_root_dir = valid_root_dir | ||
self.test_root_dir = test_root_dir | ||
self.batch_size = batch_size | ||
self.gt_shape = gt_shape | ||
self.train_mean,self.val_mean=0,0 | ||
self.train_std,self.val_std=1,1 | ||
|
||
def train_dataloader(self): | ||
train_dataset = NPYIterableDataset(self.train_root_dir) | ||
return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=32,pin_memory=True, | ||
prefetch_factor=2) | ||
|
||
def val_dataloader(self): | ||
valid_dataset = NPYIterableDataset(self.valid_root_dir) | ||
return DataLoader(valid_dataset, batch_size=1, num_workers=16) | ||
|
||
def test_dataloader(self): | ||
test_dataset = NPYIterableDataset(self.test_root_dir) | ||
return DataLoader(test_dataset, batch_size=1, num_workers=4) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
from argparse import ArgumentParser | ||
import os | ||
import glob | ||
import numpy as np | ||
import pydicom as dicom | ||
import cv2 | ||
|
||
ROOT_FOLDER = '/data_new3/username/DL/PLA_data_bak/denoised/train' | ||
ROOT_FOLDER2 = '/data_new3/username/DL/PLA_data/denoised/test' | ||
MASK_PATH = '/data_new3/username/DL/scripts/result.tif' | ||
SUB_FOLDER = ['100kv', '140kv'] | ||
START_SLICE = [10, 120, 150, 70, 15, 35, 35, 20, 15, 75, 35, 53, 45, 10, 90, 25] | ||
|
||
def apply_mask(image, mask_path): | ||
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) | ||
mask = cv2.resize(mask, (image.shape[1], image.shape[0])) | ||
masked_image = image.copy() | ||
masked_image[mask == 0] = 0 | ||
return masked_image.astype(np.float32) | ||
|
||
def save_patient_data(root_folder, save_path="/data_new3/username/DualEnergyCTSynthesis/dataset", dataset_type='train'): | ||
print(root_folder) | ||
patient_names = sorted([d for d in os.listdir(root_folder) if os.path.isdir(os.path.join(root_folder, d))]) | ||
patient_id=0 | ||
#print(patient_names) | ||
|
||
for i, patient_name in enumerate(patient_names): | ||
patient_folder = os.path.join(root_folder, patient_name) | ||
data_files = glob.glob(os.path.join(patient_folder, SUB_FOLDER[0])+ '/*.IMA') | ||
label_files = glob.glob(os.path.join(patient_folder, SUB_FOLDER[1])+ '/*.IMA') | ||
data_files.sort() | ||
label_files.sort() | ||
#print(data_files) | ||
|
||
if len(data_files) != len(label_files): | ||
raise RuntimeError("Unequal number between data files and label files!") | ||
patient_id = i | ||
if dataset_type == 'train' and patient_id >=13: | ||
dataset_type = 'valid' | ||
for j, (data_file, label_file) in enumerate(zip(data_files, label_files)): | ||
if j < START_SLICE[i] and dataset_type == 'train': | ||
continue | ||
data_dcm = dicom.read_file(data_file) | ||
label_dcm = dicom.read_file(label_file) | ||
data = apply_mask(data_dcm.pixel_array, MASK_PATH) | ||
label = apply_mask(label_dcm.pixel_array, MASK_PATH) | ||
|
||
file_name = f"{dataset_type}_{patient_id:02d}_{j + 1:03d}.npy" | ||
print(f"Saving {file_name}...") | ||
np.save(os.path.join(save_path, file_name), {'data': data, 'label': label, 'patient_id': patient_id, 'image_id': j + 1}) | ||
|
||
|
||
def main_func(save_path): | ||
if not os.path.exists(save_path): | ||
os.makedirs(save_path) | ||
|
||
save_patient_data(ROOT_FOLDER,save_path, 'train') | ||
save_patient_data(ROOT_FOLDER2,save_path, 'test') | ||
|
||
print("Data saved.") | ||
|
||
if __name__ == "__main__": | ||
parser = ArgumentParser() | ||
parser.add_argument("--save-path", type=str, default="/data_new3/username/DualEnergyCTSynthesis/dataset", | ||
help="Path to save npy files.") | ||
args = parser.parse_args() | ||
main_func(**vars(args)) |
Oops, something went wrong.