Skip to content

Commit

Permalink
Add medium baseline method (also pass strong baseline)
Browse files Browse the repository at this point in the history
- select all features expect participant state
  • Loading branch information
Bird Huang committed Sep 25, 2022
1 parent 45d60cd commit 265a542
Show file tree
Hide file tree
Showing 2 changed files with 313 additions and 0 deletions.
313 changes: 313 additions & 0 deletions HW01/HW01_medium_baseline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Import packages'''
# Numerical Operations

# Reading/Writing Data

# For Progress Bar

# Pytorch

# For plotting learning curve
#from torch.utils.tensorboard import SummaryWriter

'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Some Utility Functions'''
'''You do not need to modify this part'''




import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader, random_split
import torch.nn as nn
import math
import numpy as np
import pandas as pd
import os
import csv
from tqdm import tqdm
import torch
def same_seed(seed):
'''Fixes random number generator seeds for reproducibility.'''
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)


def train_valid_split(data_set, valid_ratio, seed):
'''Split provided training data into training set and validation set'''
valid_set_size = int(valid_ratio * len(data_set))
train_set_size = len(data_set) - valid_set_size
train_set, valid_set = random_split(data_set, [
train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))
return np.array(train_set), np.array(valid_set)


def predict(test_loader, model, device):
model.eval() # Set your model to evaluation mode.
preds = []
for x in tqdm(test_loader):
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
return preds


'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Dataset'''


class COVID19Dataset(Dataset):
'''
x: Features.
y: Targets, if none, do prediction.
'''

def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)

def __getitem__(self, idx):
if self.y is None:
return self.x[idx]
else:
return self.x[idx], self.y[idx]

def __len__(self):
return len(self.x)


'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Neural Network Model'''


class My_Model(nn.Module):
def __init__(self, input_dim):
super(My_Model, self).__init__()
# TODO: modify model's structure, be aware of dimensions.
self.layers = nn.Sequential(
nn.Linear(input_dim, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)

def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B)
return x


'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Feature Selection'''


def select_feat(train_data, valid_data, test_data, select_all=True):
'''Selects useful features to perform regression'''
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
raw_x_train, raw_x_valid, raw_x_test = train_data[:,
:-1], valid_data[:, :-1], test_data

if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
feat_idx = list(range(raw_x_train.shape[1]))[37:] # TODO: Select suitable feature columns.

return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid


'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Training Loop'''
train_loss_list, val_loss_list = [], []
train_best_loss, val_best_loss = math.inf, math.inf


def trainer(train_loader, valid_loader, model, config, device):
global train_loss_list, val_loss_list
global train_best_loss, val_best_loss
# Define your loss function, do not modify this.
criterion = nn.MSELoss(reduction='mean')

# Define your optimization algorithm.
# TODO: Please check https://pytorch.org/docs/stable/optim.html to get more available algorithms.
# TODO: L2 regularization (optimizer(weight decay...) or implement by your self).
optimizer = torch.optim.SGD(
model.parameters(), lr=config['learning_rate'], momentum=0.9)

# writer = SummaryWriter() # Writer of tensoboard.

if not os.path.isdir('./models'):
os.mkdir('./models') # Create directory of saving models.

n_epochs, step, early_stop_count = config['n_epochs'], 0, 0

for epoch in range(n_epochs):
model.train() # Set your model to train mode.
loss_record = []

# tqdm is a package to visualize your training progress.
train_pbar = tqdm(train_loader, position=0, leave=True)

for x, y in train_pbar:
optimizer.zero_grad() # Set gradient to zero.
x, y = x.to(device), y.to(device) # Move your data to device.
pred = model(x)
loss = criterion(pred, y)
# Compute gradient(backpropagation).
loss.backward()
optimizer.step() # Update parameters.
step += 1
loss_record.append(loss.detach().item())

# Display current epoch number and loss on tqdm progress bar.
train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')
train_pbar.set_postfix({'loss': loss.detach().item()})

mean_train_loss = sum(loss_record)/len(loss_record)
#writer.add_scalar('Loss/train', mean_train_loss, step)
train_loss_list.append(mean_train_loss)

model.eval() # Set your model to evaluation mode.
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
pred = model(x)
loss = criterion(pred, y)

loss_record.append(loss.item())

mean_valid_loss = sum(loss_record)/len(loss_record)
print(
f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
#writer.add_scalar('Loss/valid', mean_valid_loss, step)
val_loss_list.append(mean_valid_loss)

if mean_train_loss < train_best_loss:
train_best_loss = mean_train_loss

if mean_valid_loss < val_best_loss:
val_best_loss = mean_valid_loss
# Save your best model
torch.save(model.state_dict(), config['save_path'])
print('Saving model with loss {:.3f}...'.format(val_best_loss))
early_stop_count = 0
else:
early_stop_count += 1

if early_stop_count >= config['early_stop']:
print('\nModel is not improving, so we halt the training session.')
return


'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Configurations'''
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
'seed': 5201314, # Your seed number, you can pick your lucky number. :)
'select_all': False, # Whether to use all features.
'valid_ratio': 0.2, # validation_size = train_size * valid_ratio
'n_epochs': 3000, # Number of epochs.
'batch_size': 256,
'learning_rate': 1e-5,
# If model has not improved for this many consecutive epochs, stop training.
'early_stop': 400,
'save_path': './models/model.ckpt' # Your model will be saved here.
}


'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Dataloader'''
'''You do not need to modify this part'''
# Set seed for reproducibility
same_seed(config['seed'])


# train_data size: 2699 x 118 (id + 37 states + 16 features x 5 days)
# test_data size: 1078 x 117 (without last day's positive rate)
train_data, test_data = pd.read_csv(
'./covid.train.csv').values, pd.read_csv('./covid.test.csv').values
train_data, valid_data = train_valid_split(
train_data, config['valid_ratio'], config['seed'])

# Print out the data size.
print(f"""train_data size: {train_data.shape}
valid_data size: {valid_data.shape}
test_data size: {test_data.shape}""")

# Select features
x_train, x_valid, x_test, y_train, y_valid = select_feat(
train_data, valid_data, test_data, config['select_all'])

# Print out the number of features.
print(f'number of features: {x_train.shape[1]}')

train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \
COVID19Dataset(x_valid, y_valid), \
COVID19Dataset(x_test)

# Pytorch data loader loads pytorch dataset into batches.
train_loader = DataLoader(
train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(
valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(
test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)

'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Start training'''
model = My_Model(input_dim=x_train.shape[1]).to(
device) # put your model and data on the same computation device.
trainer(train_loader, valid_loader, model, config, device)

'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Plot learning curves with matplotlib'''
fig, (trainAxe, valAxe) = plt.subplots(1, 2, figsize=(22, 6))
fig.supxlabel('Epoch')
fig.supylabel('Loss')
trainAxe.set_title('Loss/train #min: %f'%(train_best_loss))
valAxe.set_title('Loss/validate #min: %f'%(val_best_loss))
trainAxe.plot(train_loss_list)
valAxe.plot(val_loss_list)
plt.show()

'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''

'''Testing'''


def save_pred(preds, file):
''' Save predictions to specified file '''
with open(file, 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['id', 'tested_positive'])
for i, p in enumerate(preds):
writer.writerow([i, p])


model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
preds = predict(test_loader, model, device)
save_pred(preds, 'pred.csv')

'''@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'''
Binary file added HW01/medium_baseline.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 265a542

Please sign in to comment.