The dqrng package provides fast random number generators (RNG) with good statistical properties for usage with R. It combines these RNGs with fast distribution functions to sample from uniform, normal or exponential distributions. Both the RNGs and the distribution functions are distributed as C++ header-only library.
The currently released version is available from CRAN via
install.packages("dqrng")
Intermediate releases can also be obtained via drat:
if (!requireNamespace("drat", quietly = TRUE)) install.packages("drat")
drat::addRepo("daqana")
install.packages("dqrng")
Using the provided RNGs from R is deliberately similar to using R’s build-in RNGs:
library(dqrng)
dqset.seed(42)
dqrunif(5, min = 2, max = 10)
#> [1] 9.211802 2.616041 6.236331 4.588535 5.764814
dqrexp(5, rate = 4)
#> [1] 0.35118613 0.17656197 0.06844976 0.16984095 0.10096744
They are quite a bit faster, though:
N <- 1e4
bm <- bench::mark(rnorm(N), dqrnorm(N), check = FALSE)
bm[, 1:4]
#> # A tibble: 2 x 4
#> expression min median `itr/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl>
#> 1 rnorm(N) 598.9µs 670µs 1414.
#> 2 dqrnorm(N) 85.5µs 89µs 9663.
This is also true for the provided sampling functions with replacement:
m <- 1e7
n <- 1e5
bm <- bench::mark(sample.int(m, n, replace = TRUE),
sample.int(1e3*m, n, replace = TRUE),
dqsample.int(m, n, replace = TRUE),
dqsample.int(1e3*m, n, replace = TRUE),
check = FALSE)
bm[, 1:4]
#> # A tibble: 4 x 4
#> expression min median `itr/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl>
#> 1 sample.int(m, n, replace = TRUE) 6.94ms 7.52ms 131.
#> 2 sample.int(1000 * m, n, replace = TRUE) 8.8ms 9.64ms 101.
#> 3 dqsample.int(m, n, replace = TRUE) 304.75µs 444.96µs 2207.
#> 4 dqsample.int(1000 * m, n, replace = TRUE) 397.96µs 675.24µs 1502.
And without replacement:
bm <- bench::mark(sample.int(m, n),
sample.int(1e3*m, n),
sample.int(m, n, useHash = TRUE),
dqsample.int(m, n),
dqsample.int(1e3*m, n),
check = FALSE)
#> Warning: Some expressions had a GC in every iteration; so filtering is disabled.
bm[, 1:4]
#> # A tibble: 5 x 4
#> expression min median `itr/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl>
#> 1 sample.int(m, n) 38.59ms 51.73ms 19.6
#> 2 sample.int(1000 * m, n) 11.98ms 15.34ms 63.9
#> 3 sample.int(m, n, useHash = TRUE) 9.94ms 12.73ms 71.5
#> 4 dqsample.int(m, n) 942.04µs 1.05ms 755.
#> 5 dqsample.int(1000 * m, n) 1.86ms 2.44ms 315.
Note that sampling from 10^10
elements triggers “long-vector support”
in R.
In addition the RNGs provide support for multiple independent streams for parallel usage:
N <- 1e7
dqset.seed(42, 1)
u1 <- dqrunif(N)
dqset.seed(42, 2)
u2 <- dqrunif(N)
cor(u1, u2)
#> [1] -0.0005787967
All feedback (bug reports, security issues, feature requests, …) should be provided as issues.