Skip to content

Simple Tensorflow implementation of "Large Scale GAN Training for High Fidelity Natural Image Synthesis" (BigGAN)

License

Notifications You must be signed in to change notification settings

blackcat84/BigGAN-Tensorflow

 
 

Repository files navigation

BigGAN-Tensorflow

Simple Tensorflow implementation of "Large Scale GAN Training for High Fidelity Natural Image Synthesis" (BigGAN)

main

Issue

  • The paper used orthogonal initialization, but I used random normal initialization. The reason is, when using the orthogonal initialization, it did not train properly.
  • I have applied a hierarchical latent space, but not a class embeddedding.

Usage

dataset

  • mnist and cifar10 are used inside keras
  • For your dataset, put images like this:
├── dataset
   └── YOUR_DATASET_NAME
       ├── xxx.jpg (name, format doesn't matter)
       ├── yyy.png
       └── ...

train

  • python main.py --phase train --dataset celebA-HQ --gan_type hinge

test

  • python main.py --phase test --dataset celebA-HQ --gan_type hinge

Architecture

128x128

256x256

512x512

Author

Junho Kim

About

Simple Tensorflow implementation of "Large Scale GAN Training for High Fidelity Natural Image Synthesis" (BigGAN)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%