Skip to content

Pytorch implementation of LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS (BigGAN)

License

Notifications You must be signed in to change notification settings

blackcat84/BigGAN-pytorch

 
 

Repository files navigation

biggan-pytorch

Pytorch implementation of LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS (BigGAN)

train imagenet

for 128*128*3 resolution

python main.py --batch_size 64  --dataset imagenet --adv_loss hinge --version biggan_imagenet --image_path /data/datasets

python main.py --batch_size 64  --dataset lsun --adv_loss hinge --version biggan_lsun --image_path /data1/datasets/lsun/lsun

python main.py --batch_size 64  --dataset lsun --adv_loss hinge --version biggan_lsun --parallel True --gpus 0,1,2,3 --use_tensorboard True

Different

  • not use cross-replica BatchNorm (Ioffe & Szegedy, 2015) in G

Compatability

  • CPU
  • GPU

Pretrained Models

I will publish the models I trained

Results

LSUN DATASETS(two classes): classroom and church_outdoor

  • iter 82200 (128x128) batch_size 64
  • iter 128200
  • iter 365000
  • iter 800000
  • iter 900000

About

Pytorch implementation of LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS (BigGAN)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%