Skip to content

breznak/nupic.audio

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nupic.audio

Auditory experiments using cortical learning algorithms (CLA) and hierarchical temporal memory (HTM).

Repositories of interest

Note: These repositories currently are all deemed to be work-in-progress.

Potential areas of investigation

  • Genre and style classification
  • Musical prediction and composition
  • Acoustic correlation using canonical correlation analysis (CCA)
  • Transient analysis (harmonic tracking)
  • Motion derivative encoding (similar to optical flow)
  • Echo location and spatial positioning (e.g. Anterior Ventral Cochlea Nucleus)
  • Stream segmentation and seperation (includes selective attention)
  • Cortical pathways and projections, 'What' and 'Where' pathways (belts?)
  • Auditory nerve spike firing (e.g. IHC to CN GBC integrators)
  • Dendritic micro-circuits and synaptic placement (temporal smoothing)
  • Spike-timing dependent plasticity
  • Acetylcholine inhibition enhancing discharge frequency but decreasing synaptic adaption
  • Acoustic related cell, and dendrite, membrane properties (cascading conductances, shunting)

An alternative for the encoding of audio signals is the modelling of spike firing of auditory-nerve fibers. A collection of models can be found in the EarLab @ Boston University (http://earlab.bu.edu/ See Modelling -> Downloadable Models).

Online books and references

About

Audio (analog, digital) experiments using NuPIC HTM/CLA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%