If the Terraform below fails contact [email protected] for help.
- Terraform CLI
- Crusoe Cloud CLI
- Crusoe Cloud Credentials
- Either stored in
~/.crusoe/credentials
or exported as environment variablesCRUSOE_x
- Either stored in
To use as a module fill in the variables
in your own main.tf
file
module "crusoe" {
source = "github.com/crusoecloud/crusoe-ml-rke2"
ssh_privkey_path="</path/to/priv.key"
ssh_pubkey="<pub_key>"
worker_instance_type = "h100-80gb-sxm-ib.8x"
worker_image = "ubuntu22.04-nvidia-sxm-docker:latest"
worker_count = 2
ib_partition_id = "6dcef748-dc30-49d8-9a0b-6ac87a27b4f8"
headnode_instance_type="c1a.8x"
deploy_location = "us-east1-a"
# extra variables here
}
To use from this directory, fill in the variables
in a terraform.tfvars
file
ssh_privkey_path="</path/to/priv.key"
ssh_pubkey="<pub_key>"
worker_instance_type = "h100-80gb-sxm-ib.8x"
worker_image = "ubuntu22.04-nvidia-sxm-docker:latest"
worker_count = 2
ib_partition_id = "6dcef748-dc30-49d8-9a0b-6ac87a27b4f8"
headnode_instance_type="c1a.8x"
deploy_location = "us-east1-a"
# extra variables here
And then apply, to provision resources
terraform init
terraform plan
terraform apply
Once the deployment is complete, you can access the cluster by copying the kubeconfig
file from the headnode. Replace the 'server' address in the Kubeconfig with that of your load balancer (or control plane node when deploying single control plane node configurations).
rke_endpoint=$(terraform output -raw rke-ingress-instance_public_ip)
headnode_endpoint=$(terraform output -raw rke-headnode-instance_public_ip)
scp -i $TF_VAR_ssh_privkey_path "root@${headnode_endpoint}:/etc/rancher/rke2/rke2.yaml" ./kubeconfig
# change the endpoint to the kubectl endpoint
sed -i '' "s/127.0.0.1/${rke_endpoint}/g" ./kubeconfig
# rename the context (optional)
sed -i '' "s/default/crusoe/g" ./kubeconfig
export KUBECONFIG="$(pwd)/kubeconfig"
For nodes with Nvidia GPUs, you can run the following commands to install the Nvidia GPU operators (along with the Network operator when using IB-enabled nodes) to ensure they are available for use by pods provisioned in the cluster.
helm repo add nvidia https://helm.ngc.nvidia.com/nvidia
helm repo update
helm install --wait --generate-name -n gpu-operator --create-namespace nvidia/gpu-operator --set driver.rdma.enabled=true --set driver.rdma.useHostMofed=true
helm install network-operator nvidia/network-operator -n nvidia-network-operator --create-namespace -f ./gpu-operator/values.yaml --wait
To test the GPU infiniband speeds, you can run the following commands.
kubectl apply -f https://raw.githubusercontent.com/kubeflow/mpi-operator/v0.4.0/deploy/v2beta1/mpi-operator.yaml
kubectl create -f examples/nccl-test.yaml