This repo contains source codes for a EC prediction tool namely ECRECer, which is an implementation of our paper: 「ECRECer: Enzyme Commission Number Recommendation and Benchmarking based on Multiagent Dual-core Learning」
Detailed information about the framework can be found in our paper
Shi, Z., Yuan, Q., Wang, R., Li, H., Liao, X., & Ma, H. (2022). ECRECer: Enzyme Commission Number Recommendation and Benchmarking based on Multiagent Dual-core Learning. arXiv preprint arXiv:2202.03632.
For simply use our tools to predict EC numbers, pls visit our web service at https://ecrecer.biodesign.ac.cn
To re-implement our experiments or offline use, pls use read the details below:
- Python >= 3.6
- Sklearn
- Xgboost
- conda
- jupyter lab
- ...
Create conda env use env.yaml
conda env create -f env.yaml
Download and prepare the data set use the.
python benchmark_train.py
python benchmark_test.py
python benchmark_evaluation.py
python production.py -i input_fasta_file -o output_tsv_file -mode [p|r] -topk 5