Skip to content

Dual-core Multi-agent Learning Framework For EC Number Prediction

License

Notifications You must be signed in to change notification settings

brianzavareh/ECRECer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DMLF: Enzyme Commission Number Predicting and Benchmarking with Multi-agent Dual-core Learning

This repo contains source codes for a EC prediction tool namely ECRECer, which is an implementation of our paper: 「ECRECer: Enzyme Commission Number Recommendation and Benchmarking based on Multiagent Dual-core Learning」

Detailed information about the framework can be found in our paper

Shi, Z., Yuan, Q., Wang, R., Li, H., Liao, X., & Ma, H. (2022). ECRECer: Enzyme Commission Number Recommendation and Benchmarking based on Multiagent Dual-core Learning. arXiv preprint arXiv:2202.03632.

For simply use our tools to predict EC numbers, pls visit our web service at https://ecrecer.biodesign.ac.cn

To re-implement our experiments or offline use, pls use read the details below:

Prerequisites

  • Python >= 3.6
  • Sklearn
  • Xgboost
  • conda
  • jupyter lab
  • ...

Create conda env use env.yaml

conda env create -f env.yaml

Preprocessing

Download and prepare the data set use the.

prepare_task_dataset.ipynb

Step by step benchmarking

Task 1: Enzyme or None-Enzyme Prediction

./tasks/task1.ipynb

Task 2: Polyfunctional Enzyme Prediction

./tasks/task2.ipynb

Task 3: EC Number Prediction

./tasks/task3.ipynb

High throughput benchmarking

Train

python benchmark_train.py

Test

python benchmark_test.py

Evaluation

python benchmark_evaluation.py

Production

python production.py -i input_fasta_file -o output_tsv_file -mode [p|r] -topk 5

Other details are coming soon...

Stargazers over time

Stargazers over time

About

Dual-core Multi-agent Learning Framework For EC Number Prediction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 92.4%
  • Python 7.6%