-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
1,444 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
include antitile/*.off |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Spherical tiling of the henagonal hosohedron. | ||
Vaguely resembles a peeled coconut. | ||
""" | ||
|
||
import breakdown | ||
import projection | ||
import xmath | ||
import off | ||
import numpy as np | ||
|
||
def balloon(a, b, shape, proj = projection.lambert, margin=1E-12): | ||
bkdn = breakdown.Breakdown(a, b, shape) | ||
if shape == 'q': | ||
sqc = projection.square_to_circle(bkdn.coord) | ||
elif shape == 't': | ||
abc = np.array([[1, 0], | ||
[-0.5, np.sqrt(3)/2], | ||
[-0.5, -np.sqrt(3)/2]]) | ||
sqc = projection.tri_naive_slerp(bkdn.coord, abc) | ||
#find vertices outside or on the unit circle and merge them | ||
print(np.linalg.norm(sqc, axis=-1)) | ||
goodverts = np.linalg.norm(sqc, axis=-1) < 1-margin | ||
#assign one vertex on the unit circle | ||
base_ind = np.nonzero(~goodverts)[0].min() | ||
goodverts[base_ind] = True | ||
sqc[base_ind] = [1, 0] | ||
index = xmath.renumber(goodverts, base_ind) | ||
faces = index[bkdn.faces] | ||
vertices = sqc[goodverts] | ||
#get rid of 1- and 2-vertex faces, and reduce 3-vertex arrays | ||
count = np.array([len(np.unique(i)) for i in faces]) | ||
faces = faces[count >= 3] | ||
facelist = faces.tolist() | ||
if shape == 'q': | ||
facelist = [list(set(x)) if len(set(x)) == 3 else x for x in facelist] | ||
phi, theta = proj(vertices) | ||
sph_3d = projection.spherical_to_xyz(phi, theta) | ||
return sph_3d, facelist | ||
|
||
if __name__ == "__main__": | ||
a, b = 2, 1 | ||
shape = 't' | ||
v, f = balloon(a, b, shape) | ||
result = off.write_off(v, f) | ||
with open('test.off', 'w') as file: | ||
file.write(result) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
""" | ||
import numpy as np | ||
import flat | ||
import xmath | ||
|
||
class Breakdown(flat.FlatTiling): | ||
""" | ||
Breakdown structures | ||
Attributes: | ||
freq: A 2-tuple (n, m) describing the breakdown structure. | ||
shape: Either 't' (triangular) or 'q' (quadrilateral) | ||
vertices: Vertices of the breakdown | ||
coord: Barycentric coordinates if shape='t', | ||
or xy coordinates if shape='q' | ||
lindex: Linear index coordinates of each vertex | ||
group: An integer describing where each vertex falls. | ||
-19 through -10: Inside the breakdown, lying on a feature | ||
-1: Inside the breakdown, other | ||
0, 1, 2, (3): Base vertices | ||
10, 11, 12, (13): Base edges | ||
100, 101, 102, (103): Vertices that lie outside the triangle | ||
but are adjacent to vertices within the triangle | ||
127: Outside the breakdown triangle | ||
faces: Array of faces in the breakdown structure | ||
""" | ||
def __init__(self, a, b, shape='t', remove_outside=True): | ||
""" | ||
Constructor for the breakdown object. | ||
Args: | ||
n, m: Frequency of the breakdown | ||
remove_outside: Whether to remove features that lie outside the | ||
breakdown. | ||
True: Remove faces and vertices that are neither inside the | ||
breakdown nor adjacent to it, | ||
False: Keep everything | ||
By default, true. | ||
""" | ||
v = a + b + 1 | ||
super().__init__(v,v,shape) | ||
self.freq = (a, b) | ||
|
||
vertices = self.vertices | ||
group = -np.ones(len(vertices), dtype=np.int8) | ||
self.group = group | ||
#adjust the vertices so we have room for the shape | ||
vertices[..., 0] -= b | ||
vertices[..., 2] += b | ||
if shape=='t': | ||
self._t() | ||
elif shape == 'q': | ||
self._q() | ||
|
||
cn = 111 if remove_outside else 128 | ||
condition = group < cn | ||
# renumber the adjacency list too | ||
index = xmath.renumber(condition) | ||
self.vertices = self.vertices[condition] | ||
self.coord = self.coord[condition] | ||
self.lindex = self.lindex[condition] | ||
self.group = self.group[condition] | ||
faces = index[self.faces] | ||
badface = np.any(faces < 0, axis=-1) | ||
self.faces = faces[~badface] | ||
self.base_pts = np.nonzero(np.in1d(self.group, [0,1,2,3]))[0] | ||
|
||
|
||
def _t(self): | ||
a, b = self.freq | ||
vertices = self.vertices | ||
group = self.group | ||
anorm = a**2 + a * b + b**2 | ||
# vertices of the triangle are (0,0), (a,b),(-b,a+b) | ||
x = vertices[:, 0] | ||
y = vertices[:, 1] | ||
|
||
side1 = a*y - b*x | ||
side2 = (a + b)*y + a*x | ||
side3 = (a + b)*x + b*y | ||
group[side1 == 0] = 10 | ||
group[side2 == anorm] = 11 | ||
group[side3 == 0] = 12 | ||
group[(side1 < 0) | (side2 > anorm) | (side3 < 0)] = 127 | ||
group[(x == 0) & (y == 0)] = 0 | ||
group[(x == a) & (y == b)] = 1 | ||
group[(x == -b) & (y == a + b)] = 2 | ||
self._shared_group() | ||
group[(group == 126) & (side1 < 0)] = 100 | ||
group[(group == 126) & (side2 > anorm)] = 101 | ||
group[(group == 126) & (side3 < 0)] = 102 | ||
|
||
# barycentric coordinates | ||
#FIXME | ||
mat = np.array([[a+b, b], | ||
[-b, a]])/anorm | ||
coords = vertices[:, :2].dot(mat.T) | ||
l1 = coords.sum(axis=-1, keepdims=True) | ||
self.coord = np.concatenate([l1, coords], axis=1) | ||
# mat = np.array([[ -a, -b - a, 1], | ||
# [a + b, b, 0], | ||
# [ -b, a, 0]]) / anorm | ||
# | ||
# coords = vertices.copy() | ||
# coords[:, 2] = 1 # the ol' affine matrix trick | ||
# self.coord = coords.dot(mat.T) | ||
|
||
# linear index coordinates | ||
u = x + y | ||
v = a - x | ||
w = a + b - y | ||
# u + v + w = 2a+b | ||
self.lindex = np.array([u, v, w]).T | ||
|
||
def _q(self): | ||
a, b = self.freq | ||
vertices = self.vertices | ||
group = self.group | ||
#vertices of the square are (0,0), (a,b), (a-b, a+b), (-b,a) | ||
x = vertices[:, 0] | ||
y = vertices[:, 1] | ||
right = a*y - b*x | ||
left = a*x + b*y | ||
anorm = (a**2+b**2) | ||
group[right == 0] = 10 | ||
group[left == anorm] = 11 | ||
group[right == anorm] = 12 | ||
group[left == 0] = 13 | ||
group[(right < 0) | (left > anorm) | | ||
(right > anorm) | (left < 0)] = 127 | ||
group[(x == 0) & (y == 0)] = 0 | ||
group[(x == a) & (y == b)] = 1 | ||
group[(x == a - b) & (y == a + b)] = 2 | ||
group[(x == -b) & (y == a)] = 3 | ||
self._shared_group() | ||
group[(group == 126) & (right < 0)] = 100 | ||
group[(group == 126) & (left < anorm)] = 101 | ||
group[(group == 126) & (right > anorm)] = 102 | ||
group[(group == 126) & (left > 0)] = 103 | ||
# xy [0,1]^2 coordinates | ||
vx = a + b*1j | ||
cx = self.proj_complex | ||
xy = cx/vx | ||
self.coord = np.stack([xy.real, xy.imag], axis=-1) | ||
|
||
#linear index coordinates | ||
u = x + b | ||
v = y | ||
self.lindex = np.array([u, v]).T | ||
|
||
def _shared_group(self): | ||
group = self.group | ||
faces = self.faces | ||
inside = np.nonzero(group < 0)[0] | ||
fv_inside = np.in1d(faces, inside).reshape(faces.shape) | ||
face_inside = np.any(fv_inside, axis=-1) | ||
shared = np.unique(faces[face_inside]) | ||
group[shared] = np.fmin(group[shared], 126) | ||
|
||
def frame(n=4, m=2, shape='t'): | ||
if shape == 't': | ||
return frame_triangle(n=n, m=m) | ||
elif shape == 'q': | ||
return frame_square(n=n, m=m) | ||
|
||
def frame_triangle(base_pts = np.eye(3), n=4, m=2, interp=xmath.lerp): | ||
"""Creates the "frame" of edge points for method 2. | ||
Returns a multidimensional array with dimensions: | ||
(3: Which rotation of the lines | ||
n + m + 1: Linear index | ||
2: Which end of the line (0 is the "bottom") | ||
3: barycentric coordinates) | ||
""" | ||
tnm = np.linspace(0, 1, n + m + 1)[np.newaxis, :, np.newaxis] | ||
tn = np.linspace(0, 1, n, endpoint=False)[np.newaxis, :, np.newaxis] | ||
tm = np.linspace(0, 1, m + 1)[np.newaxis, :, np.newaxis] | ||
|
||
base_pts_0 = base_pts[:, np.newaxis] | ||
base_pts_1 = np.roll(base_pts, -1, axis=0)[:, np.newaxis] | ||
base_pts_2 = np.roll(base_pts, -2, axis=0)[:, np.newaxis] | ||
|
||
linterpol_nm = interp(base_pts_0, base_pts_1, tnm) | ||
linterpol_n = interp(base_pts_0, base_pts_2, tn) | ||
linterpol_m = interp(base_pts_2, base_pts_1, tm) | ||
|
||
to = np.concatenate((linterpol_n, linterpol_m), axis=1) | ||
return np.stack([linterpol_nm, to], axis=2) | ||
|
||
def frame_square(n=4, m=2): | ||
"""Creates the "frame" of edge points for method 2. | ||
Returns a multidimensional array with dimensions: | ||
(2: Which rotation of the lines | ||
n + m + 1: Linear index | ||
2: Which end of the line (0 is the "bottom") | ||
2: xy coordinates) | ||
""" | ||
tn = np.linspace(0, 1, n + 1) | ||
tm = np.linspace(1, 0, m + 1) | ||
bottom = np.stack([tn, np.zeros(tn.shape)], axis=-1) | ||
top = np.stack([tn, np.ones(tn.shape)], axis=-1) | ||
right = np.stack([np.ones(tm.shape), tm], axis=-1) | ||
left = np.stack([np.zeros(tm.shape), tm], axis=-1) | ||
frm = np.concatenate((left[:-1], bottom), axis=0) | ||
to = np.concatenate( (top[:-1], right), axis=0) | ||
pairs = np.stack([frm, to], axis=1) | ||
other = np.stack([1-pairs[..., 1], pairs[..., 0]], axis=-1) | ||
return np.stack([pairs, other]) | ||
|
||
if __name__ == "__main__": | ||
import matplotlib.pyplot as plt | ||
from matplotlib.collections import PolyCollection, LineCollection | ||
|
||
a, b = 2, 0 | ||
shape = 't' | ||
|
||
bkdn = Breakdown(a, b, shape) | ||
frm = frame(a, b, shape) | ||
if shape == 't': | ||
abc = np.array([[0, 0], | ||
[1, 0], | ||
[0.5, np.sqrt(3)/2]]) | ||
pts_2d = bkdn.coord @ abc | ||
else: | ||
abc = np.array([[0,0], | ||
[1,0], | ||
[1,1], | ||
[0,1]]) | ||
pts_2d = bkdn.coord | ||
mx = pts_2d.max(axis=0) | ||
mn = pts_2d.min(axis=0) | ||
ptx = pts_2d[bkdn.faces] | ||
fig, ax = plt.subplots() | ||
fig.set_size_inches(6, 6) | ||
plt.axis('equal') | ||
pc = PolyCollection(ptx, edgecolors='grey') | ||
ax.add_collection(pc) | ||
ax.scatter(pts_2d[..., 0], pts_2d[..., 1], c=-bkdn.group) | ||
x = abc[...,0].tolist() + [abc[0,0]] | ||
y = abc[...,1].tolist() + [abc[0,1]] | ||
|
||
ax.plot(x,y, c='k') | ||
if shape == 't': | ||
frmp = frm @ abc | ||
pass | ||
else: | ||
frmp = frm | ||
lc = LineCollection(frmp.reshape((-1, frmp.shape[-2], frmp.shape[-1])), color='c') | ||
ax.add_collection(lc) | ||
lindex = bkdn.lindex | ||
li = xmath.line_intersection(frmp[0,lindex[:,0],0],frmp[0,lindex[:,0],1], | ||
frmp[1,lindex[:,1],0],frmp[1,lindex[:,1],1]) | ||
ax.scatter(li[..., 0], li[..., 1], c='y') | ||
#x = np.stack([li[:,0],pts_2d[:,0]],axis=-1) | ||
#y = np.stack([li[:,1],pts_2d[:,1]],axis=-1) | ||
#ax.plot(x, y, c='g') |
Oops, something went wrong.