Skip to content

Commit

Permalink
add feature learning models
Browse files Browse the repository at this point in the history
  • Loading branch information
richzhang committed Dec 3, 2016
1 parent 3c43aed commit 1b74812
Show file tree
Hide file tree
Showing 5 changed files with 561 additions and 0 deletions.
9 changes: 9 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
This repository contains:
- (1) a test time demonstration using a pre-trained colorization network (in IPython notebook)
- (2) code for training a colorization network
- (3) pre-trained AlexNet, used for representation learning tests

### Clone this repository ###
Clone the master branch of the respository using `git clone -b master --single-branch https://github.com/richzhang/colorization.git`
Expand Down Expand Up @@ -51,6 +52,14 @@ If you do this, link your modified Caffe build as `./caffe-colorization` in the

For completeness, this will also load model `./models/colorization_release_v2_norebal.caffemodel`, which is was trained without class rebalancing. This model will provide duller but "safer" colorizations. This will also load model `./models/colorization_release_v1.caffemodel`, which was used to generate the results in the [arXiv v1](arxiv.org/pdf/1603.08511v1.pdf) paper.

### (3) Representation Learning models ###

(1) Run `./models/fetch_alexnet_model.sh`. load model `./models/alexnet_release_450000_nobn_fc_rs.caffemodel`. This model was used for the representation learning tests.

(2) You have two choices.
(i) If you do the color conversion into Lab space outside of the network, use prototxt `./models/alexnet_deploy_lab.prototxt`. The input blob will be an image in Lab color space
(ii) If you wish to do the color conversion inside of the network, use prototxt `./models/alexnet_deploy.prototxt`. The input should be BGR images, non-mean centered, in [0,255]. You will have to follow Caffe installation (described in step (2) in the previous section).

### Citation ###
If you find this model useful for your resesarch, please use this [bibtex](http://richzhang.github.io/colorization/resources/bibtex_eccv2016_colorization.txt) to cite.

Expand Down
275 changes: 275 additions & 0 deletions models/alexnet_deploy.prototxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
name: "Colornet"
layer {
name: "data"
top: "data" # BGR [0,255] ***non-mean centered***
type: "Input"
input_param { shape { dim: 1 dim: 3 dim: 227 dim: 227 } }
}
# **************************
# ***** PROCESS COLORS *****
# **************************
layer { # Convert to lab
name: "img_lab"
type: "ColorConv"
bottom: "data"
top: "img_lab"
propagate_down: false
color_conv_param {
input: 0 # BGR
output: 3 # Lab
}
}
layer {
name: "img_slice"
type: "Slice"
bottom: "img_lab"
top: "img_l" # [0,100]
top: "data_ab" # [-110,110]
propagate_down: false
slice_param {
axis: 1
slice_point: 1
}
}
layer {
name: "silence_ab"
type: "Silence"
bottom: "data_ab"
}
layer { # 0-center lightness channel
name: "data_l"
type: "Convolution"
bottom: "img_l"
top: "data_l" # scaled and centered lightness value
propagate_down: false
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
convolution_param {
kernel_size: 1
num_output: 1
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data_l"
top: "conv1"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}

Loading

0 comments on commit 1b74812

Please sign in to comment.