forked from richzhang/colorization
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
#!/usr/bin/python | ||
|
||
|
||
import os | ||
import sys | ||
import argparse | ||
import numpy as np | ||
from skimage import color, io | ||
import scipy.ndimage.interpolation as sni | ||
import caffe | ||
|
||
|
||
def parse_args(argv): | ||
parser = argparse.ArgumentParser(description=__doc__, | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
|
||
parser.add_argument('flist', type=str, | ||
help='file containing list of images to process') | ||
parser.add_argument('output', type=str, | ||
help='output directory') | ||
parser.add_argument('-p', '--proto', type=str, | ||
default='../models/colorization_deploy_v2.prototxt', | ||
help='prototxt file of the net model') | ||
parser.add_argument('-m', '--model', type=str, | ||
default='../models/colorization_release_v2.caffemodel', | ||
help='caffemodel file of the net model') | ||
parser.add_argument('-c', '--cluster', type=str, | ||
default='../resources/pts_in_hull.npy', | ||
help='cluster centers (pts in hull)') | ||
parser.add_argument('-g', '--gpu', type=int, | ||
default=0, | ||
help='gpu id') | ||
|
||
args = parser.parse_args(args=argv) | ||
return args | ||
|
||
|
||
# Prepare network | ||
def prepare_net(proto, model, cluster): | ||
net = caffe.Net(proto, model, caffe.TEST) | ||
|
||
in_shape = net.blobs['data_l'].data.shape[2:] # get input shape | ||
out_shape = net.blobs['class8_ab'].data.shape[2:] # get output shape | ||
|
||
print 'Input dimensions: %s' % str(in_shape) | ||
print 'Output dimensions: %s' % str(out_shape) | ||
|
||
pts_in_hull = np.load(cluster) # load cluster centers | ||
net.params['class8_ab'][0].data[:,:,0,0] = pts_in_hull.transpose((1,0)) # populate cluster centers as 1x1 convolution kernel | ||
print 'Annealed-Mean Parameters populated' | ||
|
||
return net, in_shape, out_shape | ||
|
||
|
||
# Prepare image for network | ||
def prepare_img(fpath, in_shape): | ||
|
||
# load the original image | ||
img_rgb = caffe.io.load_image(fpath) | ||
|
||
img_lab = color.rgb2lab(img_rgb) # convert image to lab color space | ||
img_l = img_lab[:,:,0] # pull out L channel | ||
orig_shape = img_rgb.shape[:2] # original image size | ||
|
||
# resize image to network input size | ||
img_rs = caffe.io.resize_image(img_rgb, in_shape) # resize image to network input size | ||
img_lab_rs = color.rgb2lab(img_rs) | ||
img_l_rs = img_lab_rs[:,:,0] | ||
|
||
return img_l_rs, img_l, orig_shape | ||
|
||
|
||
# Process image | ||
def process(net, in_shape, out_shape, fpath): | ||
|
||
img_l_rs, img_l, orig_shape = prepare_img(fpath, in_shape) | ||
|
||
net.blobs['data_l'].data[0,0,:,:] = img_l_rs-50 # subtract 50 for mean-centering | ||
net.forward() # run network | ||
|
||
ab_dec = net.blobs['class8_ab'].data[0,:,:,:].transpose((1,2,0)) # this is our result | ||
shape = (1.*orig_shape[0]/out_shape[0], 1.*orig_shape[1]/out_shape[1]) | ||
ab_dec_us = sni.zoom(ab_dec,(shape[0],shape[1],1)) # upsample to match size of original image L | ||
img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original image L | ||
img_rgb_out = np.clip(color.lab2rgb(img_lab_out),0,1) # convert back to rgb | ||
|
||
return img_rgb_out | ||
|
||
|
||
# Save image | ||
def save_img(img, fpath, out_dir): | ||
fname_in = os.path.basename(fpath) | ||
fpath_out = os.path.join(out_dir, fname_in) | ||
|
||
io.imsave(fpath_out, img) | ||
|
||
|
||
# Main | ||
def main(argv): | ||
|
||
# Parse arguments | ||
args = parse_args(argv) | ||
print args | ||
|
||
# Prepare caffe and net | ||
caffe.set_mode_gpu() | ||
caffe.set_device(args.gpu) | ||
|
||
net, in_shape, out_shape = prepare_net(args.proto, args.model, args.cluster) | ||
|
||
# Process files | ||
with open(args.flist) as flist: | ||
for fpath in flist: | ||
fpath = fpath.rstrip('\n') | ||
print 'Processing file %s ...' % fpath | ||
img = process(net, in_shape, out_shape, fpath) | ||
save_img(img, fpath, args.output) | ||
|
||
print 'Done!' | ||
|
||
|
||
if __name__ == "__main__": | ||
main(sys.argv[1:]) | ||
|