Skip to content

bussiere/evio

 
 

Repository files navigation

evio
Build Status GoDoc

evio is an event loop networking framework that is fast and small. It makes direct epoll and kqueue syscalls rather than using the standard Go net package, and works in a similar manner as libuv and libevent.

The goal of this project is to create a server framework for Go that performs on par with Redis and Haproxy for packet handling. My hope is to use this as a foundation for Tile38 and a future L7 proxy for Go... and a bunch of other stuff.

Features

  • Fast single-threaded event loop
  • Simple API
  • Low memory usage
  • Supports tcp4, tcp6, and unix sockets
  • Allows multiple network binding on the same event loop
  • Flexible ticker event
  • Fallback for non-epoll/kqueue operating systems by simulating events with the net package
  • Ability to wake up connections from long running background operations

Getting Started

Installing

To start using evio, install Go and run go get:

$ go get -u github.com/tidwall/evio

This will retrieve the library.

Usage

Starting a server is easy with evio. Just set up your events and pass them to the Serve function along with the binding address(es). Each connections receives an ID that's passed to various events to differentiate the clients. At any point you can close a client or shutdown the server by return a Close or Shutdown action from an event.

Example echo server that binds to port 5000:

package main

import "github.com/tidwall/evio"

func main() {
	var events evio.Events
	events.Data = func(id int, in []byte) (out []byte, action evio.Action) {
		out = in
		return
	}
	if err := evio.Serve(events, "tcp://localhost:5000"); err != nil {
		panic(err.Error())
	}
}

Here the only event being used is Data, which fires when the server receives input data from a client. The exact same input data is then passed through the output return value, which is then sent back to the client.

Connect to the echo server:

$ telnet localhost 5000

Events

The event type has a bunch of handy events:

  • Serving fires when the server is ready to accept new connections.
  • Opened fires when a connection has opened.
  • Closed fires when a connection has closed.
  • Detach fires when a connection has been detached using the Detach return action.
  • Data fires when the server receives new data from a connection.
  • Prewrite fires prior to all write attempts from the server.
  • Postwrite fires immediately after every write attempt.
  • Tick fires immediately after the server starts and will fire again after a specified interval.

Multiple addresses

An server can bind to multiple addresses and share the same event loop.

evio.Serve(events, "tcp://192.168.0.10:5000", "unix://socket")

Ticker

The Tick event fires ticks at a specified interval. The first tick fires immediately after the Serving events.

events.Tick = func() (delay time.Duration, action Action){
	log.Printf("tick")
	delay = time.Second
	return
}

Wake up

A connection can be woken up using the wake function that is made available through the Serving event. This is useful for when you need to offload an operation to a background goroutine and then later notify the event loop that it's time to send some data.

Example echo server that when encountering the line "exec" it waits 5 seconds before responding.

var wake func(id int) bool
var mu sync.Mutex
var execs = make(map[int]int)

events.Serving = func(wakefn func(id int) bool, addrs []net.Addr) (action evio.Action) {
	wake = wakefn // hang on to the wake function
	return
}
events.Data = func(id int, in []byte) (out []byte, action evio.Action) {
	if in == nil {
		// look for `in` param equal to `nil` following a wake call.
		mu.Lock()
		for execs[id] > 0 {
			out = append(out, "exec\r\n"...)
			execs[id]--
		}
		mu.Unlock()
	} else if string(in) == "exec\r\n" {
		go func(){
			// do some long running operation
			time.Sleep(time.Second*5)
			mu.Lock()
			execs[id]++
			mu.Unlock()
			wake(id)
		}()
	} else {
		out = in
	}
	return
}

Data translations

The Translate function wraps events and provides a ReadWriter that can be used to translate data off the wire from one format to another. This can be useful for transparently adding compression or encryption.

For example, let's say we need TLS support:

var events Events

// ... fill the events with happy functions

cer, err := tls.LoadX509KeyPair("certs/ssl-cert-snakeoil.pem", "certs/ssl-cert-snakeoil.key")
if err != nil {
	log.Fatal(err)
}
config := &tls.Config{Certificates: []tls.Certificate{cer}}

// wrap the events with a TLS translator

events = evio.Translate(events, nil, 
	func(id int, rw io.ReadWriter) io.ReadWriter {
		return tls.Server(evio.NopConn(rw), config)
	},
)

log.Fatal(Serve(events, "tcp://0.0.0.0:443"))

Here we wrapped the event with a TLS translator. The evio.NopConn function is used to converts the ReadWriter a net.Conn so the tls.Server() call will work.

There's a working TLS example at examples/http-server/main.go that binds to port 8080 and 4443 using an developer SSL certificate. The 8080 connections will be insecure and the 4443 will be secure.

$ cd examples/http-server
$ go run main.go --tlscert example.pem
2017/11/02 06:24:33 http server started on port 8080
2017/11/02 06:24:33 https server started on port 4443
$ curl http://localhost:8080
Hello World!
$ curl -k https://localhost:4443
Hello World!

More examples

Please check out the examples subdirectory for a simplified redis clone, an echo server, and a very basic http server with TLS support.

To run an example:

$ go run examples/http-server/main.go
$ go run examples/redis-server/main.go
$ go run examples/echo-server/main.go

Performance

Benchmarks

These benchmarks were run on an ec2 c4.xlarge instance in single-threaded mode (GOMAXPROC=1) over Ipv4 localhost. Check out benchmarks for more info.

echo benchmarkhttp benchmarkredis 1 benchmarkredis 8 benchmark

Contact

Josh Baker @tidwall

License

evio source code is available under the MIT License.

About

Fast event loop networking for Go

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 94.8%
  • Shell 5.2%