Skip to content

Commit

Permalink
libcore: add N(0,1) and Exp(1) distributions to core::rand.
Browse files Browse the repository at this point in the history
Sample from the normal and exponential distributions using the Ziggurat
algorithm.
  • Loading branch information
huonw authored and graydon committed May 1, 2013
1 parent 08dd625 commit 1eb5efc
Show file tree
Hide file tree
Showing 4 changed files with 687 additions and 0 deletions.
121 changes: 121 additions & 0 deletions src/etc/ziggurat_tables.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
#!/usr/bin/env python
# xfail-license

# This creates the tables used for distributions implemented using the
# ziggurat algorithm in `core::rand::distributions;`. They are
# (basically) the tables as used in the ZIGNOR variant (Doornik 2005).
# They are changed rarely, so the generated file should be checked in
# to git.
#
# It creates 3 tables: X as in the paper, F which is f(x_i), and
# F_DIFF which is f(x_i) - f(x_{i-1}). The latter two are just cached
# values which is not done in that paper (but is done in other
# variants). Note that the adZigR table is unnecessary because of
# algebra.
#
# It is designed to be compatible with Python 2 and 3.

from math import exp, sqrt, log, floor
import random

# The order should match the return value of `tables`
TABLE_NAMES = ['X', 'F', 'F_DIFF']

# The actual length of the table is 1 more, to stop
# index-out-of-bounds errors. This should match the bitwise operation
# to find `i` in `zigurrat` in `libstd/rand/mod.rs`. Also the *_R and
# *_V constants below depend on this value.
TABLE_LEN = 256

# equivalent to `zigNorInit` in Doornik2005, but generalised to any
# distribution. r = dR, v = dV, f = probability density function,
# f_inv = inverse of f
def tables(r, v, f, f_inv):
# compute the x_i
xvec = [0]*(TABLE_LEN+1)

xvec[0] = v / f(r)
xvec[1] = r

for i in range(2, TABLE_LEN):
last = xvec[i-1]
xvec[i] = f_inv(v / last + f(last))

# cache the f's
fvec = [0]*(TABLE_LEN+1)
fdiff = [0]*(TABLE_LEN+1)
for i in range(TABLE_LEN+1):
fvec[i] = f(xvec[i])
if i > 0:
fdiff[i] = fvec[i] - fvec[i-1]

return xvec, fvec, fdiff

# Distributions
# N(0, 1)
def norm_f(x):
return exp(-x*x/2.0)
def norm_f_inv(y):
return sqrt(-2.0*log(y))

NORM_R = 3.6541528853610088
NORM_V = 0.00492867323399

NORM = tables(NORM_R, NORM_V,
norm_f, norm_f_inv)

# Exp(1)
def exp_f(x):
return exp(-x)
def exp_f_inv(y):
return -log(y)

EXP_R = 7.69711747013104972
EXP_V = 0.0039496598225815571993

EXP = tables(EXP_R, EXP_V,
exp_f, exp_f_inv)


# Output the tables/constants/types

def render_static(name, type, value):
# no space or
return 'pub static %s: %s =%s;\n' % (name, type, value)

# static `name`: [`type`, .. `len(values)`] =
# [values[0], ..., values[3],
# values[4], ..., values[7],
# ... ];
def render_table(name, values):
rows = []
# 4 values on each row
for i in range(0, len(values), 4):
row = values[i:i+4]
rows.append(', '.join('%.18f' % f for f in row))

rendered = '\n [%s]' % ',\n '.join(rows)
return render_static(name, '[f64, .. %d]' % len(values), rendered)


with open('ziggurat_tables.rs', 'w') as f:
f.write('''// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Tables for distributions which are sampled using the ziggurat
// algorithm. Autogenerated by `ziggurat_tables.py`.
pub type ZigTable = &\'static [f64, .. %d];
''' % (TABLE_LEN + 1))
for name, tables, r in [('NORM', NORM, NORM_R),
('EXP', EXP, EXP_R)]:
f.write(render_static('ZIG_%s_R' % name, 'f64', ' %.18f' % r))
for (tabname, table) in zip(TABLE_NAMES, tables):
f.write(render_table('ZIG_%s_%s' % (name, tabname), table))
6 changes: 6 additions & 0 deletions src/libcore/rand.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,9 @@ and so can be used to generate any type that implements `Rand`. Type inference
means that often a simple call to `rand::random()` or `rng.gen()` will
suffice, but sometimes an annotation is required, e.g. `rand::random::<float>()`.
See the `distributions` submodule for sampling random numbers from
distributions like normal and exponential.
# Examples
~~~
use core::rand::RngUtil;
Expand Down Expand Up @@ -47,6 +50,9 @@ use util;
use vec;
use libc::size_t;

#[path="rand/distributions.rs"]
pub mod distributions;

/// A type that can be randomly generated using an Rng
pub trait Rand {
fn rand<R: Rng>(rng: &R) -> Self;
Expand Down
148 changes: 148 additions & 0 deletions src/libcore/rand/distributions.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Sampling from random distributions
// Some implementations use the Ziggurat method
// https://en.wikipedia.org/wiki/Ziggurat_algorithm
//
// The version used here is ZIGNOR [Doornik 2005, "An Improved
// Ziggurat Method to Generate Normal Random Samples"] which is slower
// (about double, it generates an extra random number) than the
// canonical version [Marsaglia & Tsang 2000, "The Ziggurat Method for
// Generating Random Variables"], but more robust. If one wanted, one
// could implement VIZIGNOR the ZIGNOR paper for more speed.

use prelude::*;
use rand::{Rng,Rand};

mod ziggurat_tables;

// inlining should mean there is no performance penalty for this
#[inline(always)]
fn ziggurat<R:Rng>(rng: &R,
center_u: bool,
X: ziggurat_tables::ZigTable,
F: ziggurat_tables::ZigTable,
F_DIFF: ziggurat_tables::ZigTable,
pdf: &'static fn(f64) -> f64, // probability density function
zero_case: &'static fn(&R, f64) -> f64) -> f64 {
loop {
let u = if center_u {2.0 * rng.gen() - 1.0} else {rng.gen()};
let i: uint = rng.gen::<uint>() & 0xff;
let x = u * X[i];

let test_x = if center_u {f64::abs(x)} else {x};

// algebraically equivalent to |u| < X[i+1]/X[i] (or u < X[i+1]/X[i])
if test_x < X[i + 1] {
return x;
}
if i == 0 {
return zero_case(rng, u);
}
// algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1
if F[i+1] + F_DIFF[i+1] * rng.gen() < pdf(x) {
return x;
}
}
}

/// A wrapper around an `f64` to generate N(0, 1) random numbers (a.k.a. a
/// standard normal, or Gaussian). Multiplying the generated values by the
/// desired standard deviation `sigma` then adding the desired mean `mu` will
/// give N(mu, sigma^2) distributed random numbers.
///
/// Note that this has to be unwrapped before use as an `f64` (using either
/// `*` or `cast::transmute` is safe).
///
/// # Example
///
/// ~~~
/// use core::rand::distributions::StandardNormal;
///
/// fn main() {
/// let normal = 2.0 + (*rand::random::<StandardNormal>()) * 3.0;
/// println(fmt!("%f is from a N(2, 9) distribution", normal))
/// }
/// ~~~
pub struct StandardNormal(f64);

impl Rand for StandardNormal {
fn rand<R:Rng>(rng: &R) -> StandardNormal {
#[inline(always)]
fn pdf(x: f64) -> f64 {
f64::exp((-x*x/2.0) as f64) as f64
}
#[inline(always)]
fn zero_case<R:Rng>(rng: &R, u: f64) -> f64 {
// compute a random number in the tail by hand

// strange initial conditions, because the loop is not
// do-while, so the condition should be true on the first
// run, they get overwritten anyway (0 < 1, so these are
// good).
let mut x = 1.0, y = 0.0;

// XXX infinities?
while -2.0*y < x * x {
x = f64::ln(rng.gen()) / ziggurat_tables::ZIG_NORM_R;
y = f64::ln(rng.gen());
}
if u < 0.0 {x-ziggurat_tables::ZIG_NORM_R} else {ziggurat_tables::ZIG_NORM_R-x}
}

StandardNormal(ziggurat(
rng,
true, // this is symmetric
&ziggurat_tables::ZIG_NORM_X,
&ziggurat_tables::ZIG_NORM_F, &ziggurat_tables::ZIG_NORM_F_DIFF,
pdf, zero_case))
}
}

/// A wrapper around an `f64` to generate Exp(1) random numbers. Dividing by
/// the desired rate `lambda` will give Exp(lambda) distributed random
/// numbers.
///
/// Note that this has to be unwrapped before use as an `f64` (using either
/// `*` or `cast::transmute` is safe).
///
/// # Example
///
/// ~~~
/// use core::rand::distributions::Exp1;
///
/// fn main() {
/// let exp2 = (*rand::random::<Exp1>()) * 0.5;
/// println(fmt!("%f is from a Exp(2) distribution", exp2));
/// }
/// ~~~
pub struct Exp1(f64);

// This could be done via `-f64::ln(rng.gen::<f64>())` but that is slower.
impl Rand for Exp1 {
#[inline]
fn rand<R:Rng>(rng: &R) -> Exp1 {
#[inline(always)]
fn pdf(x: f64) -> f64 {
f64::exp(-x)
}
#[inline(always)]
fn zero_case<R:Rng>(rng: &R, _u: f64) -> f64 {
ziggurat_tables::ZIG_EXP_R - f64::ln(rng.gen())
}

Exp1(ziggurat(rng, false,
&ziggurat_tables::ZIG_EXP_X,
&ziggurat_tables::ZIG_EXP_F, &ziggurat_tables::ZIG_EXP_F_DIFF,
pdf, zero_case))
}
}
Loading

0 comments on commit 1eb5efc

Please sign in to comment.