Skip to content

N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution (CVPR2023 Accepted)

License

Notifications You must be signed in to change notification settings

caotongabc/NGramSwin

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NGramSwin

N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution (CVPR 2023)

Haram Choi*, Jeongmin Lee, and Jihoon Yang+

*: This work has been done during my 3rd semester of Master Course in Sogang University.

+: Corresponding author.

arXiv paper supplement visual poster

  • Introduces the N-Gram context to deep learning in the low-level vision domain.
  • Our N-Gram context algorithm used at window partitioning is in my_model/ngswin_model/win_partition.py
  • Two tracks of this paper:
  1. Constructing NGswin with an efficient architecture for image super-resolution.
  2. Improving other Swin Transformer based SR methods (SwinIR-light, HNCT) with N-Gram.
  • NGswin outperforms the previous leading efficient SR methods with a relatively efficient structure.
  • SwinIR-NG outperforms the current best state-of-the-art lightweight SR methods.

News

-May 24, 2023: Presentation poster available

-Mar 02, 2023: Codes released publicly

-Feb 28, 2023: Our paper accepted at CVPR 2023

Model Architecture

overall

N-Gram Method

ngram_method

SCDP Bottleneck Algorithm

scdp_algo

Visual Results

Comparison with other models (Please Click)

vis_results

Visualization of effectiveness of N-Gram context (Please Click)

vis_results2

* The visual results on the other images can be downloaded in my drive.

  • The visual results can be produced by running the codes below.

  • The datasets (Set5, Set14, BSDS100, Urban100, Manga109) are publicly released and low-resolution images can be obtained by MATLAB bicubic kernel (codes in bicubic_kernel.m).

Efficient and Lightweight Super-Resolution Results

NGswin Efficient SR Results (Please Click)

NGswin_results

SwinIR-NG Lightweight SR Results (Please Click)

comp_sota2

Summary of Results (Please Click)

github_result

Requirements

Libraries

  • Python 3.6.9
  • PyTorch >= 1.10.1+cu102
  • timm >= 0.6.1
  • torchvision >= 0.11.2+cu102
  • einops 0.3.0
  • numpy 1.19.5
  • OpenCV 4.6.0
  • tqdm 4.61.2
  • (optional) MATLAB (for BICUBIC kernel to obtain low-resolution images)

Datasets (names and path)

TESTING

HR file name example: baby.npy
LR file name example: babyx2.npy

../testsets

Set5

HR

LR_bicubic

X2

X3

X4

Set14

BSDS100

urban100

manga109

TRAINING

../DIV2K

DIV2K_train_HR

DIV2K_train_LR_bicubic

X2

X3

X4

Testing with pre-trained models

You can get the results in the Tables of our paper.

If you have multi gpus that can be used for Distributed Data Parallel (DDP), follow the commands below.

Please properly edit the first five arguments to work on your devices.

python3 ddp_test_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name NGswin --target_mode light_x2
python3 ddp_test_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name NGswin --target_mode light_x3
python3 ddp_test_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name NGswin --target_mode light_x4
python3 ddp_test_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name SwinIR-NG --target_mode light_x2
python3 ddp_test_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name SwinIR-NG --target_mode light_x3
python3 ddp_test_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name SwinIR-NG --target_mode light_x4

If not, follow the commands below.

Please properly edit the first two arguments to work on your devices.

python3 dp_test_main.py --device cuda:0 --num_device 1 --model_name NGswin --target_mode light_x2
python3 dp_test_main.py --device cuda:0 --num_device 1 --model_name NGswin --target_mode light_x3
python3 dp_test_main.py --device cuda:0 --num_device 1 --model_name NGswin --target_mode light_x4
python3 dp_test_main.py --device cuda:0 --num_device 1 --model_name SwinIR-NG --target_mode light_x2
python3 dp_test_main.py --device cuda:0 --num_device 1 --model_name SwinIR-NG --target_mode light_x3
python3 dp_test_main.py --device cuda:0 --num_device 1 --model_name SwinIR-NG --target_mode light_x4

Training from scratch: x2 task

with DDP

  • NOTE: argument batch_size means the size of mini-batch assigned per gpu
python3 ddp_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name NGswin --batch_size 16 --target_mode light_x2
python3 ddp_main.py --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name SwinIR-NG --batch_size 16 --target_mode light_x2

without DDP

  • NOTE: argument batch_size means the size of mini-batch assigned to total gpus (differs from DDP)
python3 dp_main.py --device cuda:0 --num_device 4 --model_name NGswin --batch_size 64 --target_mode light_x2
python3 dp_main.py --device cuda:0 --num_device 4 --model_name SwinIR-NG --batch_size 64 --target_mode light_x2

Training by warm-start: x3, x4 tasks

with DDP

python3 ddp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name NGswin --batch_size 16 --target_mode light_x3
python3 ddp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name NGswin --batch_size 16 --target_mode light_x4
python3 ddp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name SwinIR-NG --batch_size 16 --target_mode light_x3
python3 ddp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --total_nodes 1 --gpus_per_node 4 --node_rank 0 --ip_address xxx.xxx.xxx.xxx --backend nccl --model_name SwinIR-NG --batch_size 16 --target_mode light_x4

without DDP

python3 dp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --device cuda:0 --num_device 4 --model_name NGswin --batch_size 64 --target_mode light_x3
python3 dp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --device cuda:0 --num_device 4 --model_name NGswin --batch_size 64 --target_mode light_x4
python3 dp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --device cuda:0 --num_device 4 --model_name SwinIR-NG --batch_size 64 --target_mode light_x3
python3 dp_main_finetune.py --pretrain_path models/xxxxxxxx_xxxxxx/model_xxx.pth --warm_start True --warm_start_epoch 50 --device cuda:0 --num_device 4 --model_name SwinIR-NG --batch_size 64 --target_mode light_x4

Citation

(preferred)
@inproceedings{choi2023n,
  title={N-gram in swin transformers for efficient lightweight image super-resolution},
  author={Choi, Haram and Lee, Jeongmin and Yang, Jihoon},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2071--2081},
  year={2023}
}

@article{choi2022n,
  title={N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution},
  author={Choi, Haram and Lee, Jeongmin and Yang, Jihoon},
  journal={arXiv preprint arXiv:2211.11436},
  year={2022}
}

Credits

Our codes were strongly referred to Swin Transformer (V1 & V2) and SwinIR.

About

N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution (CVPR2023 Accepted)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • M 0.4%