Skip to content

Commit

Permalink
Adding SSL version of the calculator example
Browse files Browse the repository at this point in the history
- Used to test asyncio SSL on Windows mainly
- Skipping asyncio thread tests on Windows (due to getTimer wrapper bug
  on Windows)
  • Loading branch information
haata committed Jun 10, 2020
1 parent 745887c commit 6532ca5
Show file tree
Hide file tree
Showing 5 changed files with 606 additions and 4 deletions.
353 changes: 353 additions & 0 deletions examples/async_ssl_calculator_client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
#!/usr/bin/env python3

import argparse
import asyncio
import os
import socket
import ssl

import capnp
import calculator_capnp


this_dir = os.path.dirname(os.path.abspath(__file__))


class PowerFunction(calculator_capnp.Calculator.Function.Server):

'''An implementation of the Function interface wrapping pow(). Note that
we're implementing this on the client side and will pass a reference to
the server. The server will then be able to make calls back to the client.'''

def call(self, params, **kwargs):
'''Note the **kwargs. This is very necessary to include, since
protocols can add parameters over time. Also, by default, a _context
variable is passed to all server methods, but you can also return
results directly as python objects, and they'll be added to the
results struct in the correct order'''

return pow(params[0], params[1])


async def myreader(client, reader):
while True:
data = await reader.read(4096)
client.write(data)


async def mywriter(client, writer):
while True:
data = await client.read(4096)
writer.write(data.tobytes())
await writer.drain()


def parse_args():
parser = argparse.ArgumentParser(usage='Connects to the Calculator server \
at the given address and does some RPCs')
parser.add_argument("host", help="HOST:PORT")

return parser.parse_args()


async def main(host):
host = host.split(':')
addr = host[0]
port = host[1]

# Setup SSL context
ctx = ssl.create_default_context(ssl.Purpose.SERVER_AUTH, cafile=os.path.join(this_dir, 'selfsigned.cert'))

# Handle both IPv4 and IPv6 cases
try:
print("Try IPv4")
reader, writer = await asyncio.open_connection(
addr, port,
ssl=ctx,
family=socket.AF_INET
)
except Exception:
print("Try IPv6")
reader, writer = await asyncio.open_connection(
addr, port,
ssl=ctx,
family=socket.AF_INET6
)

# Start TwoPartyClient using TwoWayPipe (takes no arguments in this mode)
client = capnp.TwoPartyClient()

# Assemble reader and writer tasks, run in the background
coroutines = [myreader(client, reader), mywriter(client, writer)]
asyncio.gather(*coroutines, return_exceptions=True)

# Bootstrap the Calculator interface
calculator = client.bootstrap().cast_as(calculator_capnp.Calculator)

'''Make a request that just evaluates the literal value 123.
What's interesting here is that evaluate() returns a "Value", which is
another interface and therefore points back to an object living on the
server. We then have to call read() on that object to read it.
However, even though we are making two RPC's, this block executes in
*one* network round trip because of promise pipelining: we do not wait
for the first call to complete before we send the second call to the
server.'''

print('Evaluating a literal... ', end="")

# Make the request. Note we are using the shorter function form (instead
# of evaluate_request), and we are passing a dictionary that represents a
# struct and its member to evaluate
eval_promise = calculator.evaluate({"literal": 123})

# This is equivalent to:
'''
request = calculator.evaluate_request()
request.expression.literal = 123
# Send it, which returns a promise for the result (without blocking).
eval_promise = request.send()
'''

# Using the promise, create a pipelined request to call read() on the
# returned object. Note that here we are using the shortened method call
# syntax read(), which is mostly just sugar for read_request().send()
read_promise = eval_promise.value.read()

# Now that we've sent all the requests, wait for the response. Until this
# point, we haven't waited at all!
response = await read_promise.a_wait()
assert response.value == 123

print("PASS")

'''Make a request to evaluate 123 + 45 - 67.
The Calculator interface requires that we first call getOperator() to
get the addition and subtraction functions, then call evaluate() to use
them. But, once again, we can get both functions, call evaluate(), and
then read() the result -- four RPCs -- in the time of *one* network
round trip, because of promise pipelining.'''

print("Using add and subtract... ", end='')

# Get the "add" function from the server.
add = calculator.getOperator(op='add').func
# Get the "subtract" function from the server.
subtract = calculator.getOperator(op='subtract').func

# Build the request to evaluate 123 + 45 - 67. Note the form is 'evaluate'
# + '_request', where 'evaluate' is the name of the method we want to call
request = calculator.evaluate_request()
subtract_call = request.expression.init('call')
subtract_call.function = subtract
subtract_params = subtract_call.init('params', 2)
subtract_params[1].literal = 67.0

add_call = subtract_params[0].init('call')
add_call.function = add
add_params = add_call.init('params', 2)
add_params[0].literal = 123
add_params[1].literal = 45

# Send the evaluate() request, read() the result, and wait for read() to finish.
eval_promise = request.send()
read_promise = eval_promise.value.read()

response = await read_promise.a_wait()
assert response.value == 101

print("PASS")

'''
Note: a one liner version of building the previous request (I highly
recommend not doing it this way for such a complicated structure, but I
just wanted to demonstrate it is possible to set all of the fields with a
dictionary):
eval_promise = calculator.evaluate(
{'call': {'function': subtract,
'params': [{'call': {'function': add,
'params': [{'literal': 123},
{'literal': 45}]}},
{'literal': 67.0}]}})
'''

'''Make a request to evaluate 4 * 6, then use the result in two more
requests that add 3 and 5.
Since evaluate() returns its result wrapped in a `Value`, we can pass
that `Value` back to the server in subsequent requests before the first
`evaluate()` has actually returned. Thus, this example again does only
one network round trip.'''

print("Pipelining eval() calls... ", end="")

# Get the "add" function from the server.
add = calculator.getOperator(op='add').func
# Get the "multiply" function from the server.
multiply = calculator.getOperator(op='multiply').func

# Build the request to evaluate 4 * 6
request = calculator.evaluate_request()

multiply_call = request.expression.init("call")
multiply_call.function = multiply
multiply_params = multiply_call.init("params", 2)
multiply_params[0].literal = 4
multiply_params[1].literal = 6

multiply_result = request.send().value

# Use the result in two calls that add 3 and add 5.

add_3_request = calculator.evaluate_request()
add_3_call = add_3_request.expression.init("call")
add_3_call.function = add
add_3_params = add_3_call.init("params", 2)
add_3_params[0].previousResult = multiply_result
add_3_params[1].literal = 3
add_3_promise = add_3_request.send().value.read()

add_5_request = calculator.evaluate_request()
add_5_call = add_5_request.expression.init("call")
add_5_call.function = add
add_5_params = add_5_call.init("params", 2)
add_5_params[0].previousResult = multiply_result
add_5_params[1].literal = 5
add_5_promise = add_5_request.send().value.read()

# Now wait for the results.
assert (await add_3_promise.a_wait()).value == 27
assert (await add_5_promise.a_wait()).value == 29

print("PASS")

'''Our calculator interface supports defining functions. Here we use it
to define two functions and then make calls to them as follows:
f(x, y) = x * 100 + y
g(x) = f(x, x + 1) * 2;
f(12, 34)
g(21)
Once again, the whole thing takes only one network round trip.'''

print("Defining functions... ", end="")

# Get the "add" function from the server.
add = calculator.getOperator(op='add').func
# Get the "multiply" function from the server.
multiply = calculator.getOperator(op='multiply').func

# Define f.
request = calculator.defFunction_request()
request.paramCount = 2

# Build the function body.
add_call = request.body.init("call")
add_call.function = add
add_params = add_call.init("params", 2)
add_params[1].parameter = 1 # y

multiply_call = add_params[0].init("call")
multiply_call.function = multiply
multiply_params = multiply_call.init("params", 2)
multiply_params[0].parameter = 0 # x
multiply_params[1].literal = 100

f = request.send().func

# Define g.
request = calculator.defFunction_request()
request.paramCount = 1

# Build the function body.
multiply_call = request.body.init("call")
multiply_call.function = multiply
multiply_params = multiply_call.init("params", 2)
multiply_params[1].literal = 2

f_call = multiply_params[0].init("call")
f_call.function = f
f_params = f_call.init("params", 2)
f_params[0].parameter = 0

add_call = f_params[1].init("call")
add_call.function = add
add_params = add_call.init("params", 2)
add_params[0].parameter = 0
add_params[1].literal = 1

g = request.send().func

# OK, we've defined all our functions. Now create our eval requests.

# f(12, 34)
f_eval_request = calculator.evaluate_request()
f_call = f_eval_request.expression.init("call")
f_call.function = f
f_params = f_call.init("params", 2)
f_params[0].literal = 12
f_params[1].literal = 34
f_eval_promise = f_eval_request.send().value.read()

# g(21)
g_eval_request = calculator.evaluate_request()
g_call = g_eval_request.expression.init("call")
g_call.function = g
g_call.init('params', 1)[0].literal = 21
g_eval_promise = g_eval_request.send().value.read()

# Wait for the results.
assert (await f_eval_promise.a_wait()).value == 1234
assert (await g_eval_promise.a_wait()).value == 4244

print("PASS")

'''Make a request that will call back to a function defined locally.
Specifically, we will compute 2^(4 + 5). However, exponent is not
defined by the Calculator server. So, we'll implement the Function
interface locally and pass it to the server for it to use when
evaluating the expression.
This example requires two network round trips to complete, because the
server calls back to the client once before finishing. In this
particular case, this could potentially be optimized by using a tail
call on the server side -- see CallContext::tailCall(). However, to
keep the example simpler, we haven't implemented this optimization in
the sample server.'''

print("Using a callback... ", end="")

# Get the "add" function from the server.
add = calculator.getOperator(op='add').func

# Build the eval request for 2^(4+5).
request = calculator.evaluate_request()

pow_call = request.expression.init("call")
pow_call.function = PowerFunction()
pow_params = pow_call.init("params", 2)
pow_params[0].literal = 2

add_call = pow_params[1].init("call")
add_call.function = add
add_params = add_call.init("params", 2)
add_params[0].literal = 4
add_params[1].literal = 5

# Send the request and wait.
response = await request.send().value.read().a_wait()
assert response.value == 512

print("PASS")

if __name__ == '__main__':
# Using asyncio.run hits an asyncio ssl bug
# https://bugs.python.org/issue36709
# asyncio.run(main(parse_args().host), loop=loop, debug=True)
loop = asyncio.get_event_loop()
loop.run_until_complete(main(parse_args().host))
Loading

0 comments on commit 6532ca5

Please sign in to comment.