forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request PaddlePaddle#1527 from qingqing01/fit_a_line
Fit_a_line v2 api
- Loading branch information
Showing
4 changed files
with
164 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import paddle.v2 as paddle | ||
import paddle.v2.dataset.uci_housing as uci_housing | ||
|
||
|
||
def main(): | ||
# init | ||
paddle.init(use_gpu=False, trainer_count=1) | ||
|
||
# network config | ||
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) | ||
y_predict = paddle.layer.fc(input=x, | ||
param_attr=paddle.attr.Param(name='w'), | ||
size=1, | ||
act=paddle.activation.Linear(), | ||
bias_attr=paddle.attr.Param(name='b')) | ||
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) | ||
cost = paddle.layer.regression_cost(input=y_predict, label=y) | ||
|
||
# create parameters | ||
parameters = paddle.parameters.create(cost) | ||
|
||
# create optimizer | ||
optimizer = paddle.optimizer.Momentum(momentum=0) | ||
|
||
trainer = paddle.trainer.SGD(cost=cost, | ||
parameters=parameters, | ||
update_equation=optimizer) | ||
|
||
# event_handler to print training and testing info | ||
def event_handler(event): | ||
if isinstance(event, paddle.event.EndIteration): | ||
if event.batch_id % 100 == 0: | ||
print "Pass %d, Batch %d, Cost %f, %s" % ( | ||
event.pass_id, event.batch_id, event.cost, event.metrics) | ||
|
||
if isinstance(event, paddle.event.EndPass): | ||
result = trainer.test( | ||
reader=paddle.reader.batched( | ||
uci_housing.test(), batch_size=2), | ||
reader_dict={'x': 0, | ||
'y': 1}) | ||
if event.pass_id % 10 == 0: | ||
print "Test %d, %s" % (event.pass_id, result.metrics) | ||
|
||
# training | ||
trainer.train( | ||
reader=paddle.reader.batched( | ||
paddle.reader.shuffle( | ||
uci_housing.train(), buf_size=500), | ||
batch_size=2), | ||
reader_dict={'x': 0, | ||
'y': 1}, | ||
event_handler=event_handler, | ||
num_passes=30) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import os | ||
from common import download | ||
|
||
__all__ = ['train', 'test'] | ||
|
||
URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data' | ||
MD5 = 'd4accdce7a25600298819f8e28e8d593' | ||
feature_names = [ | ||
'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', | ||
'PTRATIO', 'B', 'LSTAT' | ||
] | ||
|
||
UCI_TRAIN_DATA = None | ||
UCI_TEST_DATA = None | ||
|
||
|
||
def feature_range(maximums, minimums): | ||
import matplotlib | ||
matplotlib.use('Agg') | ||
import matplotlib.pyplot as plt | ||
fig, ax = plt.subplots() | ||
feature_num = len(maximums) | ||
ax.bar(range(feature_num), maximums - minimums, color='r', align='center') | ||
ax.set_title('feature scale') | ||
plt.xticks(range(feature_num), feature_names) | ||
plt.xlim([-1, feature_num]) | ||
fig.set_figheight(6) | ||
fig.set_figwidth(10) | ||
if not os.path.exists('./image'): | ||
os.makedirs('./image') | ||
fig.savefig('image/ranges.png', dpi=48) | ||
plt.close(fig) | ||
|
||
|
||
def load_data(filename, feature_num=14, ratio=0.8): | ||
global UCI_TRAIN_DATA, UCI_TEST_DATA | ||
if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None: | ||
return | ||
|
||
data = np.fromfile(filename, sep=' ') | ||
data = data.reshape(data.shape[0] / feature_num, feature_num) | ||
maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( | ||
axis=0) / data.shape[0] | ||
feature_range(maximums[:-1], minimums[:-1]) | ||
for i in xrange(feature_num - 1): | ||
data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) | ||
offset = int(data.shape[0] * ratio) | ||
UCI_TRAIN_DATA = data[:offset] | ||
UCI_TEST_DATA = data[offset:] | ||
|
||
|
||
def train(): | ||
global UCI_TRAIN_DATA | ||
load_data(download(URL, 'uci_housing', MD5)) | ||
|
||
def reader(): | ||
for d in UCI_TRAIN_DATA: | ||
yield d[:-1], d[-1:] | ||
|
||
return reader | ||
|
||
|
||
def test(): | ||
global UCI_TEST_DATA | ||
load_data(download(URL, 'uci_housing', MD5)) | ||
|
||
def reader(): | ||
for d in UCI_TEST_DATA: | ||
yield d[:-1], d[-1:] | ||
|
||
return reader |