Skip to content

Commit

Permalink
Merge pull request PaddlePaddle#1747 from reyoung/feature/fix_evaluat…
Browse files Browse the repository at this point in the history
…or_in_layer_v2

Feature/fix evaluator in layer v2
  • Loading branch information
reyoung authored Apr 6, 2017
2 parents 9ab860e + e7b3a5f commit cae15ed
Show file tree
Hide file tree
Showing 4 changed files with 119 additions and 10 deletions.
3 changes: 2 additions & 1 deletion python/paddle/v2/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import topology
import data_feeder
import networks
import evaluator
from . import dataset
from . import reader
from . import plot
Expand All @@ -35,7 +36,7 @@
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology', 'networks', 'infer', 'plot'
'topology', 'networks', 'infer', 'plot', 'evaluator'
]


Expand Down
63 changes: 54 additions & 9 deletions python/paddle/v2/config_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,13 +65,27 @@ class Layer(object):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__contex__ = {}
self.__context__ = {}
self.__parent_layers__ = parent_layers
self.__children_layers__ = [] # used for evaluator.

def append_child(self, layer, parent_names):
self.__children_layers__.append((layer, parent_names))

def to_proto(self, context):
"""
function to set proto attribute
"""
self.__context__ = context

# short cut if myself is parsed before.
if self.context_name() in context:
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]

# parse parent before myself
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
Expand All @@ -83,12 +97,29 @@ def to_proto(self, context):
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer

# parse myself.
ret_val = self.to_proto_impl(**kwargs)

if self.context_name() is not None and \
self.context_name() not in context:
context[self.context_name()] = ret_val

# parse children.
for layer, pnames in self.__children_layers__:
drop = False

# child will only be parsed if all parents are in context.
for pname in pnames:
if pname not in context:
drop = True
break
if drop:
continue
layer.to_proto(context=context)

if self.context_name() is None:
return self.to_proto_impl(**kwargs)
elif self.context_name() not in context:
context[self.context_name()] = self.to_proto_impl(**kwargs)
self.__contex__ = context
if self.use_context_name():
return ret_val
elif self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
Expand All @@ -113,10 +144,13 @@ def calculate_size(self):
this layer is called.
:return:
"""
return self.__contex__[self.context_name()].size
return self.__context__[self.context_name()].size


def __convert_to_v2__(method_name, parent_names, is_default_name=True):
def __convert_to_v2__(method_name,
parent_names,
is_default_name=True,
attach_parent=False):
if is_default_name:
wrapper = wrap_name_default(name_prefix=method_name)
else:
Expand All @@ -129,9 +163,20 @@ def __init__(self, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if kwargs.has_key(pname):
if pname in kwargs:
parent_layers[pname] = kwargs[pname]

if attach_parent:
pnames = [x.context_name() for x in parent_layers.values()]

for pname in parent_layers:
layers = kwargs[pname]
if not isinstance(layers, collections.Sequence):
layers = [layers]

for layer in layers:
layer.append_child(self, pnames)

for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
Expand Down
47 changes: 47 additions & 0 deletions python/paddle/v2/evaluator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.trainer_config_helpers.evaluators as evs
import inspect
from config_base import __convert_to_v2__

__all__ = []


def initialize():
def convert_to_new_name(nm):
return nm[:-len("_evaluator")]

for __ev_name__ in filter(lambda x: x.endswith('_evaluator'), evs.__all__):
__ev__ = getattr(evs, __ev_name__)
if hasattr(__ev__, 'argspec'):
argspec = __ev__.argspec
else:
argspec = inspect.getargspec(__ev__)
parent_names = filter(lambda x: x in ['input', 'label', 'weight'],
argspec.args)
v2_ev = __convert_to_v2__(
__ev_name__,
parent_names=parent_names,
is_default_name='name' in argspec.args,
attach_parent=True)

__new_name__ = convert_to_new_name(__ev_name__)

globals()[__new_name__] = v2_ev
globals()[__new_name__].__name__ = __new_name__
__all__.append(__new_name__)


initialize()
16 changes: 16 additions & 0 deletions python/paddle/v2/tests/test_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import paddle.v2.layer as layer
import paddle.v2.pooling as pooling
import paddle.v2.networks as networks
import paddle.v2.evaluator as evaluator

pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10))
Expand Down Expand Up @@ -262,5 +263,20 @@ def test_vgg(self):
print layer.parse_network(vgg_out)


class EvaluatorTest(unittest.TestCase):
def test_evaluator(self):
img = layer.data(name='pixel', type=data_type.dense_vector(784))
output = layer.fc(input=img,
size=10,
act=activation.Softmax(),
name='fc_here')
lbl = layer.data(name='label', type=data_type.integer_value(10))
cost = layer.cross_entropy_cost(input=output, label=lbl)

evaluator.classification_error(input=output, label=lbl)
print layer.parse_network(cost)
print layer.parse_network(output)


if __name__ == '__main__':
unittest.main()

0 comments on commit cae15ed

Please sign in to comment.